

### PERFORMANCE ASSESSMENT OF HYBRID FIBERS REINFORCED COMPOSITES UNDER TRIBOLOGICAL CONDITIONS

Mr. Yashas Gowda Thyavihalli Girijappa TGGS, KMUTNB, Thailand ID:61-090939-6051-1

Advisor:Prof. Dr.-Ing. habil. Suchart Siengchin,President,KMUTNB Co-advisor: Dr. Sanjay Mavinkere Rangappa

# ACKNOWLEDGMENT

> Prof. Dr.-Ing. habil. Suchart Siengchin, President, KMUTNB.

Materials and Production Engineering (I-DMPE), Academic affairs Department & Board of Management, TGGS, KMUTNB.

> Natural composites lab-Researchers ,members and faculties.

# BACKGROUND

- The recent research and development in the field of materials science and technology focuses attention towards the potential utilization of biodegradable materials in various applications.
- The development of ecofriendly materials of any kind is necessary for new demands.
- The development of composite materials utilized to solve technological problems is one of the most significant advances in the field of materials science.
- Today, composite materials appear to be the choice for many engineering applications.

# **SCOPE OF THE STUDY**

- In the present work, natural and synthetic fibers are to be selected as reinforced fibers and then hybrid fiber composites are to be fabricated by different manufacturing techniques.
- The physical, mechanical and tribological performances of these hybrid fibers reinforced composites are to be systematically evaluated and studied.
- Furthermore, the effects of hybrid fibers on wear mechanism are to be studied based on the worn surfaces morphologies.

# **PURPOSE OF THE STUDY**

- Over the past several years, many material scientists and formulation designers studied on the appropriate combination of reinforced fibers for tribological applications.
- The fundamental problem of incorporating and selecting the right combination of reinforced fibers tribological applications for has not yet been properly addressed, and which needs further research.

# INTRODUCTION

A composite is a structural material that consists of two or more combined constituents that are combined at a macroscopic level and are not soluble in each other. One constituent is called the **reinforcing phase** and the one in which it is embedded is called the **matrix**.

[Ref: Autar K. Kaw]

Reinforcement+ Matrix = Composite

# CLASSIFICATION OF COMPOSITE MATERIALS

Based on the matrix materials

Metal Matrix Composites (MMCs)

Ceramic Matrix Composites (CMCs)

### > Polymer Matrix Composites (PMCs):

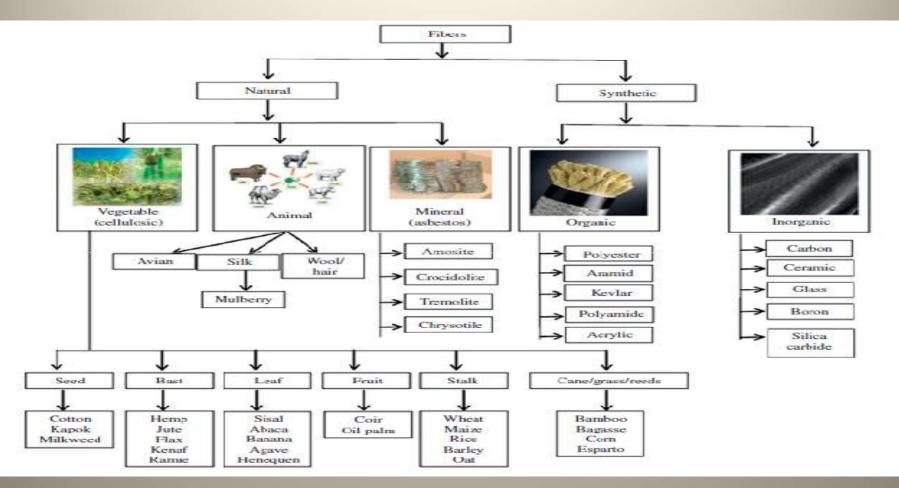
Generally, polymer can be classified into two classes, thermoplastics and thermosettings.

Based on the types of reinforcement, polymer can be classified as particulate reinforced polymer composite and fibre reinforced polymer composites (FRPCs).

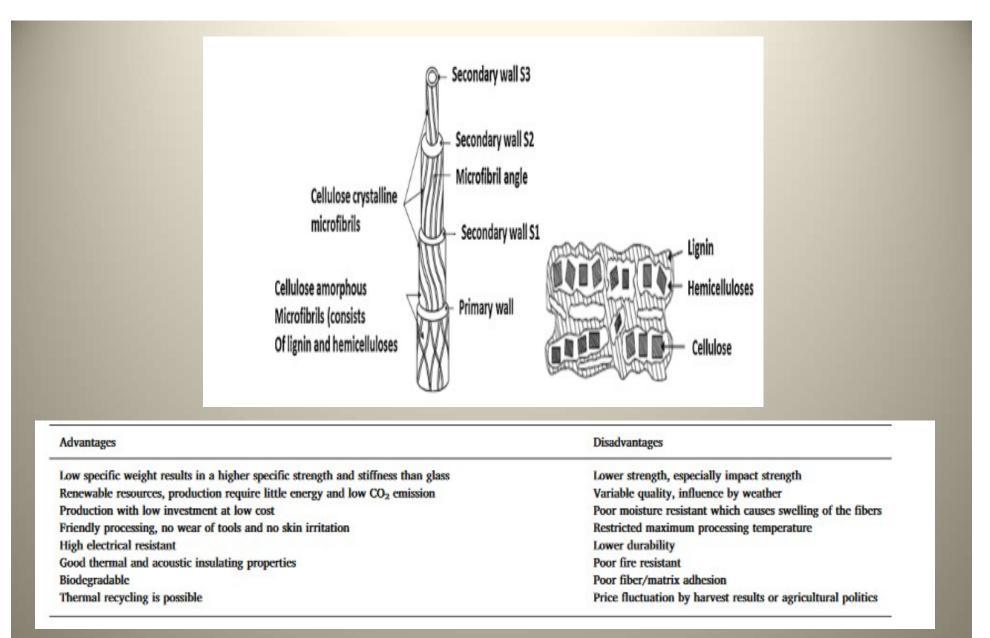
- FRPCs are composed of natural and synthetic fibers which can be manufactured with or without the application of filler material.
- FRPCs are mainly categorized as natural fiber composites (NFCs) and synthetic fiber composites (SFCs).

### Major drawbacks of synthetic fiber composites

- Though the composites made from synthetic fibers possess high strength, the field of application is restricted because of their higher cost of production and low biodegradability.
- Although SFCs have excellent mechanical properties but the process of disposal is very difficult due to severe environmental concern and process of recycling of these composites has been serious problems.
- Health problems during processing of composites like skin irritation, allergy, respiratory problems etc.


### NATURAL FIBER COMPOSITES

➤ The increasing demand for green, environment friendly has resulted in new natural fiber based materials as replacements for non-degradable materials.


Due to significant weight savings and low cost of raw materials the automobile industry begun to apply natural fiber composites in a variety of exterior and interior applications.

The usage of natural fiber based composite materials is growing during recent years due to their specific properties, clearly positive environmental impact, economical production, processing and their safe handling and working conditions.

### COMMONLY USED NATURAL FIBRES AND MATRICES FOR POLYMER COMPOSITES



Source: Sanjay M R "Potential of Natural/Synthetic Hybrid Composites for Aerospace Applications" In book. Sustainable Composites for Aerospace Applications. Woodhead Publishing UK (ELSEVIER, UK), 2018, pp. 315-351.



Sanjay, M.R., Siengchin, S., Parameswaranpillai, J., Jawaid, M., Pruncu, C.I. and Khan, A., 2018. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydrate polymers.

### **CHEMICAL COMPOSITIONS OF SOME NATURAL FIBERS**

| Fiber                 | Cellulose<br>(wt.%) | Hemicelluloses<br>(wt.%) | Lignin<br>(wt.%) | Wax<br>(wt. %) | Moisture<br>Content (%) | Ash<br>(wt.%) |
|-----------------------|---------------------|--------------------------|------------------|----------------|-------------------------|---------------|
| Prosopis juliflora    | 61.65               | 16.14                    | 17.11            | 0.61           | 9.48                    | 5.2           |
| Acacia leucophloea    | 68.09               | 13.60                    | 17.73            | 0.55           | 8.83                    | -             |
| Sanseviera cylindrica | 79.7                | 10.13                    | 3.8              | 0.09           | 3.08                    | -             |
| Agave                 | 68.42               | 4.85                     | 4.85             | 0.26           | 7.69                    | -             |
| Areca                 | 53.2                | 32.98                    | 7.2%             | -              | -                       | -             |
| Bamboo                | 33-45               | 30                       | 20-25            | -              | -                       | -             |
| Borassus              | 53.40               | 29.6                     | 17.00            | -              | -                       | -             |
| Banana                | 60-65               | 6-8                      | 5-10             | -              | -                       | 1.2           |
| Jute                  | 59-71               | 12-13                    | 11.8-12.9        | -              | -                       | 0.7           |
| Sisal                 | 60-67               | 10-15                    | 8-12             | -              | -                       | 0.14-0.87     |
| Kenaf                 | 31-72               | 20.3-21.5                | 8-19             | -              | -                       | -             |
| Pineapple leaf        | 70-83               | -                        | 5-12.7           | -              | 11.8                    | -             |
| Century plant         | 71.65               | 22.24                    | 6.09             | -              | -                       | -             |

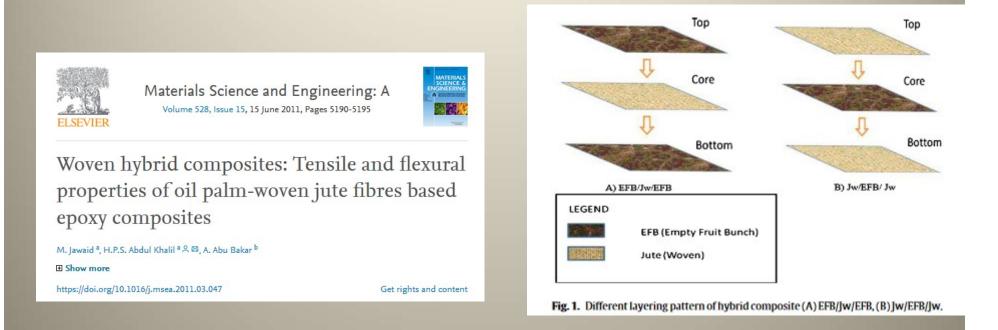
### MECHANICAL AND PHYSICAL PROPERTIES OF SOME FIBERS

| Fiber                            | Density (g/cm <sup>3</sup> ) | Tensile strength<br>(MPa) | Young's modulus<br>(GPa) | Elongation at break<br>(%) |  |
|----------------------------------|------------------------------|---------------------------|--------------------------|----------------------------|--|
| Jute                             | 1.23                         | 325-770                   | 37.5-55                  | 2.5                        |  |
| Flax                             | 1.38                         | 700-1000                  | 60-70                    | 2.3                        |  |
| Hemp                             | 1.35                         | 530-1110                  | 45                       | 3                          |  |
| Ramie                            | 1.44                         | 915                       | 23                       | 3.7                        |  |
| Banana                           | 1.35                         | 721.5-910                 | 29                       | 2                          |  |
| Bagasse                          | 1.2                          | 290                       | 17                       | 1.1                        |  |
| Areca                            | 1-1.1                        | 147- 322                  | 3.5-5.7                  | 10.1-13.2                  |  |
| Pineapple                        | 1.5                          | 1020-1600                 | 71                       | 0.8                        |  |
| Kenaf                            | 1.2                          | 745-930                   | 41                       | 1.6                        |  |
| Coir                             | 1.2                          | 140.5-175                 | 6                        | 27.5                       |  |
| Sisal                            | 1.2                          | 460-855                   | 15.5                     | 8                          |  |
| Abaca                            | 1.5                          | 410-810                   | 41                       | 3.4                        |  |
| Cotton                           | 1.21                         | 250-500                   | 6-10                     | 7                          |  |
| Nettle                           | 1.51                         | 650                       | 38                       | 1.7                        |  |
| Yashas Gowda T.G.et,al (2019) 13 |                              |                           |                          |                            |  |

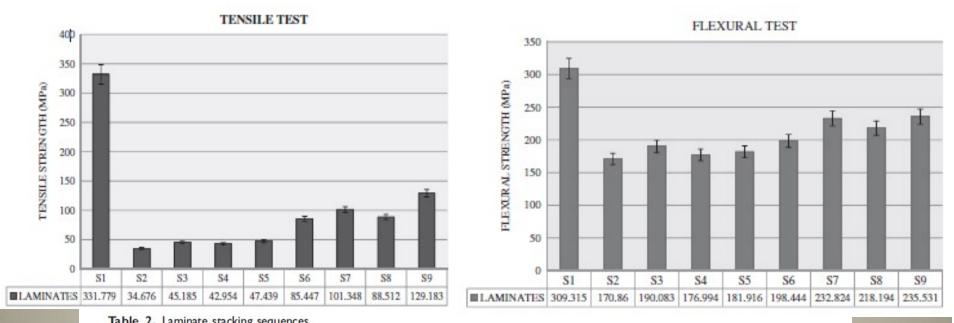
# **HYBRID COMPOSITES**

- The word "hybrid" is derived from Greek- Latin origin and can be defined as the material composed of different mixture of matrices combined with two or more reinforcing and filler material.
- The important advantage of using hybrid composite is that, since it is made up of more than one fiber if any one fiber lacks certain characteristics it can be complemented by other fiber and also balance in cost and performance of this type of composite could be obtained by proper material design considerations.
- Better results could be obtained by hybrid composites depending upon various properties like individual fiber length, structure of fiber, fiber content and its orientation, fiber to matrix bonding, fibers arrangement and finally dependent on the failure strain of each fibers in composite.

| System                              | Materials                                                                                                                                                     | Highlights                                                                                                                                                                                                                                                                          | Advantages                                                                                                                       |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|                                     | – Glass-jute fibre hybrids                                                                                                                                    | <ul> <li>Hybrid had higher mechanical properties<br/>when compared with non-hybrid jute rein-<br/>forced composite</li> <li>Reduction of degradation of jute fibres</li> </ul>                                                                                                      | <ul> <li>Balancing performance and cost</li> <li>Reducing moisture absorption</li> <li>Improved mechanical properties</li> </ul> |
| Synthetic-natural<br>fibres hybrids | <ul> <li>Carbon-flax fibre hy-<br/>brids</li> </ul>                                                                                                           | <ul> <li>Hybrid had increased mechanical properties<br/>when compared to non-hybrid woven flax re-<br/>inforced composites</li> </ul>                                                                                                                                               | - Improved mechanical properties                                                                                                 |
| - Carbon-jute fibre hy-<br>brids    |                                                                                                                                                               | <ul> <li>Mechanical properties of hybrid material are<br/>higher than that of non-hybrid jute reinforced<br/>composites</li> </ul>                                                                                                                                                  | <ul> <li>Improved mechanical properties</li> <li>Hybrid can replace non hybrid<br/>carbon reinforced composite</li> </ul>        |
| Natural-natural<br>fibre hybrids    | <ul> <li>Kenaf-jute fibre hybrids</li> <li>Kenaf-hemp fibre hy-<br/>brids</li> </ul>                                                                          | <ul> <li>Hybrid composites absorbed less water in<br/>comparison to non-hybrid kenaf, jute and<br/>hemp reinforced composites</li> <li>Hybrid composites had higher mechanical<br/>properties in comparison to non-hybrid kenaf,<br/>jute and hemp reinforced composites</li> </ul> | <ul> <li>Low cost</li> <li>Minimal improvement of mechan-<br/>ical and water resistance properties</li> </ul>                    |
|                                     | <ul> <li>Seaweed-sugar palm<br/>fibre hybrids</li> </ul>                                                                                                      | <ul> <li>Hybrid composites had slightly improved ten-<br/>sile and flexural strengths with lower impact<br/>resistance</li> </ul>                                                                                                                                                   | <ul> <li>Low cost</li> <li>Minimal improvement of mechan-<br/>ical and water resistance properties</li> </ul>                    |
|                                     | <ul> <li>Oil palm fibres-clay<br/>hybrid</li> </ul>                                                                                                           | <ul> <li>Mechanical properties of hybrid showed sig-<br/>nificant increase when compared to non-hy-<br/>brid oil palm fibre reinforced composites</li> </ul>                                                                                                                        | <ul> <li>Low cost</li> <li>Significant improvement of me-<br/>chanical properties</li> </ul>                                     |
| Hybrid                              | <ul> <li>Pine cone fibres-clay<br/>hybrid</li> </ul>                                                                                                          | <ul> <li>Tensile modulus of hybrid composite increase<br/>with increasing loading</li> </ul>                                                                                                                                                                                        | <ul> <li>Low cost</li> <li>Significant improvement of tensile modulus</li> </ul>                                                 |
| nanocomposites                      | <ul> <li>Kenaf fibres- oil palm<br/>nanofiller</li> <li>Kenaf- Montmorillonite<br/>(MMT) and organically<br/>modified montmoril-<br/>lonite (OMMT)</li> </ul> | <ul> <li>Mechanical properties of hybrid showed sig-<br/>nificant increase when compared to non-hy-<br/>brid kenaf fibre reinforced composites</li> </ul>                                                                                                                           | <ul> <li>Low cost</li> <li>Significant improvement of me-<br/>chanical properties</li> </ul>                                     |


Mochane, M.J., Mokhena, T.C., Mokhothu, T.H., Mtibe, A., Sadiku, E.R., Ray, S.S., Ibrahim, I.D. and Daramola, O.O., 2019. Recent progress on natural fiber hybrid composites for advanced applications: A review.

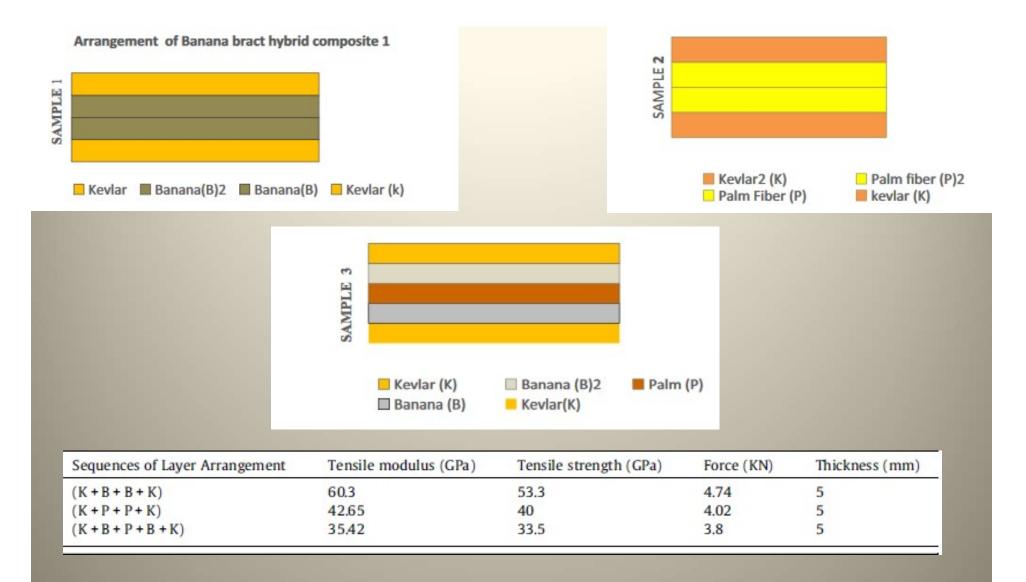
### REVIEW ON MECHANICAL PROPERTIES OF NATURAL FIBER HYBRID COMPOSITES


| Natural/Hybrid fiber                                            | Matrix polymer              | Fabrication<br>Technique               | <b>Property Evaluated</b>                                                                        | References                   |
|-----------------------------------------------------------------|-----------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------|
| Coir/glass fiber                                                | Polyester                   | Close mold                             | Fiber alkali treatment, water<br>absorption property                                             | J. Rout et al.               |
| Oil palm empty fruit<br>bunch/ glass fiber                      | Phenol-<br>formaldehyde(PF) | Hand layup                             | Tensile, flexural and impact properties,<br>hardness, density and void formation                 | M.S. Sreekala et<br>al.      |
| Banana/glass fiber                                              | Phenol-<br>formaldehyde(PF) | Hand layup,<br>Compression<br>moulding | Adhesion between fibre and matrix,<br>Tensile properties, Flexural behaviour,<br>Impact behavior | S. Joseph et al.             |
| Biofibre (pineapple<br>leaf fibre/<br>sisal fibre)/ glass fibre | Unsaturated polyester       | Hand layup                             | Tensile, Flexural and impact strength,<br>fibre–matrix interaction, water<br>absorption property | S. Mishra et al.             |
| Banana/Hemp/glass<br>fibers                                     | Ероху                       | Mold layup                             | Tensile, flexural and impact strength,<br>SEM analysis                                           | R. Bhoopathi et<br>al.<br>16 |

| Glass/natural fiber     | Epoxy vinyl ester          | Hand layup                                  | Tensile strength, Flexural strength                                                        | G. Cicala et al.                |
|-------------------------|----------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------|
| Kenaf/glass fiber       | Ероху                      | Modified sheet<br>molding compound<br>(SMC) | Tensile, flexural, impact strength,                                                        | M.M. Davoodi et<br>al.          |
| Sisal/jute/GFRP         | Ероху                      | Hand layup                                  | Tensile, flexural and impact<br>properties, scanning electron<br>microscopy (SEM) analysis | M. Ramesh et al.                |
| Curaua/glass fiber      | Orthophthalic<br>polyester | Hot Compression<br>moulding                 | Tensile, flexural and shear proper                                                         | J.H.S. Almeida<br>Junior et al. |
| Sugar palm/ glass fiber | Unsaturated polyester      | Hand layup                                  | Tensile, flexural and impact strength,<br>SEM analysis                                     | S.M. Sapuan et al.              |
| Flax/glass fiber        | Phenolic resin             | Compression<br>moulding                     | Tensile and interfacial properties                                                         | Y. Zhang et al.                 |
|                         |                            |                                             |                                                                                            |                                 |

### REVIEW ON MECHANICAL PROPERTIES OF NATURAL FIBER HYBRID COMPOSITES




Mechanical behaviour of woven fabrics based composites depends on the type of weave, fabric weave is one of the important fundamental weaves. Textile bio composites can be tailored to satisfy the specific needs of mechanical performance as well as adequate structural integrity of composite structures at microstructure level



|                            |                | Weight (g)  |                |           | Weight fraction (%) |       |                |        |                        |       |
|----------------------------|----------------|-------------|----------------|-----------|---------------------|-------|----------------|--------|------------------------|-------|
| Laminate Stacking sequence | w <sub>f</sub> |             | W <sub>f</sub> |           |                     |       |                | Malana |                        |       |
|                            | Wg             | Wj          | Wk             | Wm        | Wg                  | Wj    | W <sub>k</sub> | Wm     | Volume<br>fraction (%) |       |
| SI                         | G+G+G+G+G      | $180 \pm 5$ | _              | _         | $300\pm10$          | 37.5  | _              | _      | 62.5                   | 20.56 |
| S2                         | J+J+J+J+J      |             | $75\pm3$       |           | $200\pm10$          | _     | 27.28          | _      | 72.72                  | 22.75 |
| S3                         | K+K+K+K        | —           | _              | $75\pm3$  | $200\pm10$          | —     |                | 27.28  | 72.72                  | 22.75 |
| S4                         | J+K+J+K+J      | _           | $45\pm 2$      | $30\pm 2$ | $200\pm10$          | _     | 16.36          | 10.90  | 72.74                  | 23.30 |
| S5                         | K+J+K+J+K      | —           | $30\pm2$       | $45\pm2$  | $200 \pm 10$        | _     | 10.90          | 16.36  | 72.74                  | 23.65 |
| S6                         | G+J+J+J+G      | $72\pm3$    | $45\pm 2$      |           | $250\pm10$          | 19.62 | 12.26          |        | 68.12                  | 20.10 |
| S7                         | G+K+K+K+G      | $72\pm3$    | _              | $45\pm 2$ | $250\pm10$          | 19.62 | _              | 12.26  | 68.12                  | 20.86 |
| S8                         | G+J+K+J+G      | $72 \pm 3$  | $30\pm 2$      | 15±1      | $250 \pm 10$        | 19.62 | 8.17           | 4.09   | 68.12                  | 21.21 |
| S9                         | G+K+J+K+G      | $72 \pm 3$  | $15 \pm 1$     | $30\pm 2$ | $250 \pm 10$        | 19.62 | 4.09           | 8.17   | 68.12                  | 21.45 |

Note: J: jute fabric; K: kenaf fabric; G: E-glass fabric; m: matrix.

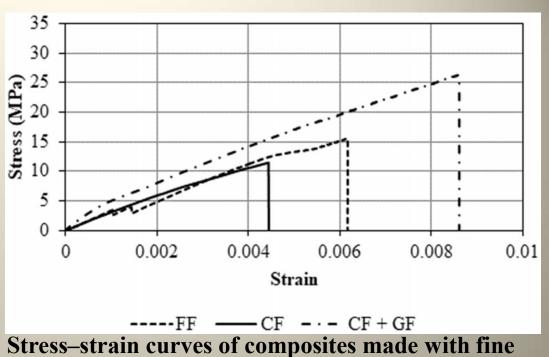
Sanjay, M.R. and Yogesha, B., 2018. Studies on hybridization effect of jute/kenaf/E-glass woven fabric epoxy composites for potential applications: Effect of laminate stacking sequences. Journal of Industrial Textiles, 47(7), pp.1830-1848.



Dinesh, S., Elanchezhian, C., Vijayaramnath, B., Sathiyanarayanan, K. and Adinarayanan, A., 2019. Experimental investigation of banana bract fiber and palm fiber reinforced with epoxy hybrid composites. Materials Today: Proceedings.

Table 4 Tensile properties of the composite laminates

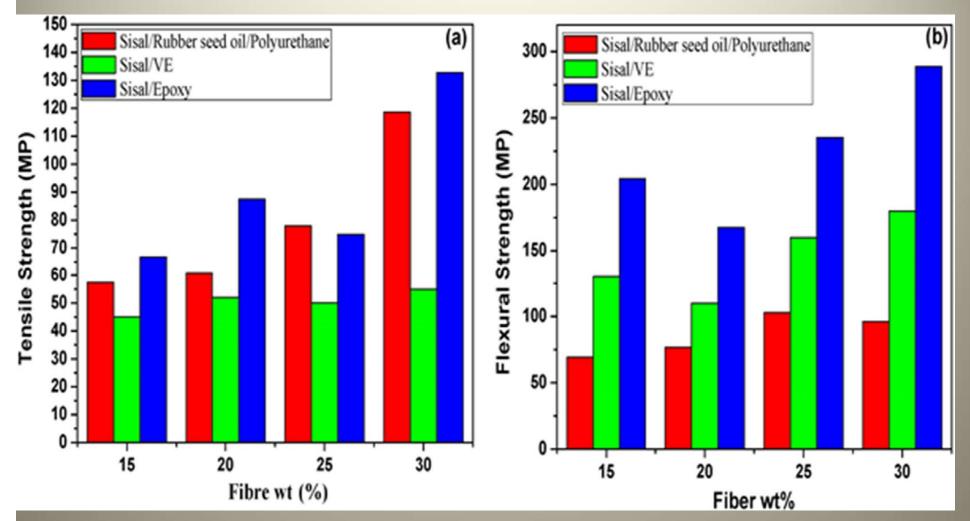
Table 5 Flexural properties of the composite laminates


| Laminates | Peak load (N) | UTS (MPa) | Tensile modulus (GPa) |
|-----------|---------------|-----------|-----------------------|
| A1        | 6283.138      | 346.636   | 1.2837                |
| A2        | 955.759       | 33.119    | 0.2014                |
| A3        | 2301.632      | 108.224   | 0.5322                |
| A4        | 3371.206      | 168.820   | 0.7216                |
| A5        | 1024.174      | 31.853    | 0.2219                |

| Laminates | Peak load (N) | Flexural strength (MPa) | Flexural<br>modulus (GPa) |
|-----------|---------------|-------------------------|---------------------------|
| Al        | 170.812       | 318.753                 | 20.831                    |
| A2        | 67.012        | 124.642                 | 7.704                     |
| A3        | 110.647       | 205.643                 | 12.720                    |
| A4        | 129.149       | 241.216                 | 14.958                    |
| A5        | 90.536        | 168.396                 | 10.430                    |

| Laminates Sequences | Sequences                       | w (g)       |            |                |                | W (%) | W (%) |                 |        |  |
|---------------------|---------------------------------|-------------|------------|----------------|----------------|-------|-------|-----------------|--------|--|
|                     |                                 | Wf          |            | w <sub>m</sub> | W <sub>f</sub> |       |       | Wm              |        |  |
|                     |                                 | wg          | Ws         | Wsc            |                | Wg    | Ws    | W <sub>sc</sub> |        |  |
| A1                  | G + G + G + G + G               | $180 \pm 5$ |            |                | $300 \pm 10$   | 37.5  | -     |                 | 62.5   |  |
| A 2                 | S + S + S + S + S               | -           | $75 \pm 3$ | -              | $200 \pm 10$   | -     | 27.28 | -               | 72.72  |  |
| A 3                 | G + S + S + S + G               | $72 \pm 3$  | $45 \pm 2$ | 0.70           | $250 \pm 10$   | 19.62 | 12.26 | -               | 68.12  |  |
| A 4                 | G + S + G + S + G               | $108 \pm 4$ | $30 \pm 2$ | -              | $275 \pm 10$   | 26.15 | 7.26  | -               | 66.59  |  |
| A 5                 | S + S + S + S + S (With Filler) | -           | $75 \pm 3$ | 2              | $200 \pm 10$   | -     | 27.07 | 0.722           | 72.208 |  |

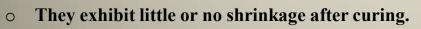
Arpitha, G.R., Sanjay, M.R., Senthamaraikannan, P., Barile, C. and Yogesha, B., 2017. Hybridization effect of sisal/glass/epoxy/filler based woven fabric reinforced composites. Experimental Techniques, 41(6), pp.577-584.


Mechanical properties of ٠ composites made with coarse fibre and fine fibre have not changed significantly. Mechanical of fibre coarse sandwiched with glass fibre composites is more when compared to that of fibre areca pure composites



Stress-strain curves of composites made with fine fibre (FF),Coarse fibre (CF) and coarse fibre with glass fibre(CF+GF)

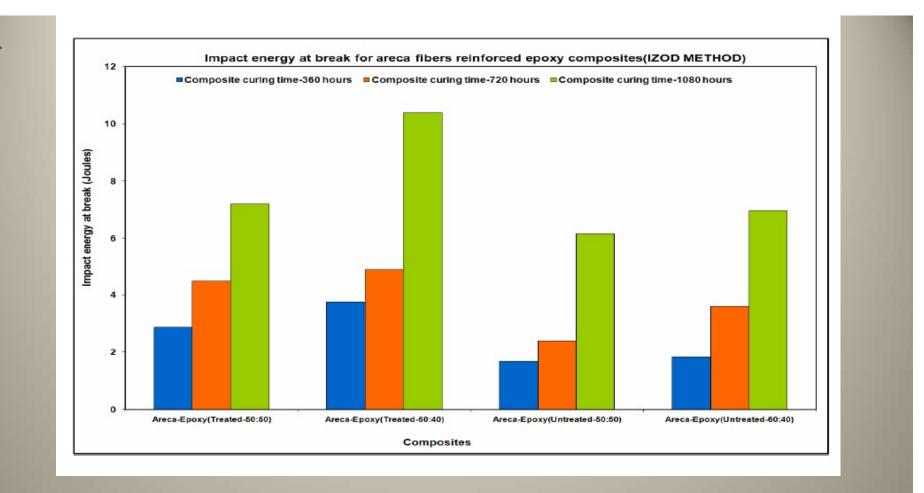
Muralidhar, N., Kaliveeran, V., Arumugam, V. and Reddy, I.S., 2019. A Study on Areca nut Husk Fibre Extraction, Composite Panel Preparation and Mechanical Characteristics of the Composites. Journal of The Institution of Engineers (India): Series D, pp.1-11.


# Variation in tensile and flexural strength of sisal fibre reinforced composites with various matrices on varying fibre weight%



Senthilkumar, K., Saba, N., Rajini, N., Chandrasekar, M., Jawaid, M., Siengchin, S. and Alotman, O.Y., 2018. Mechanical properties evaluation of sisal fibre reinforced polymer composites: a review. Construction and Building Materials, 174, pp.713-729.

# EPOXY


- Effective strength.
- Good toughness.
- Appreciable resilience.
- Good resistance to moisture and chemical attack.
- Great electrical insulating properties and is devoid of volatile matter.
- They can be cured at ambient temperature without any pressure by using a curing agent or may be heat cured.
- They can be bonded to nearly all materials like wood, glass, natural fibers, and metal.





• Epoxy resin has excellent adhesion to a large number of materials and could be further strengthened with the addition of fibre.

| Table 2<br>Properties of epoxy resin.          |                            |
|------------------------------------------------|----------------------------|
| Appearance                                     | A clear pale yellow liquid |
| Specific gravity at 25 °C (g/cm <sup>3</sup> ) | 1.12                       |
| Solid content (%)                              | 84                         |
| Tensile strength (MPa)                         | 31                         |
| Flexural strength (MPa)                        | 67                         |
| Impact strength (Kg/m <sup>2</sup> )           | 9                          |



The strength of areca fiber composites increases with increase in volume fraction of fibres in the composite and post composite curing time.

Srinivasa, C.V. and Bharath, K.N., 2011. Impact and hardness properties of areca fiberepoxy reinforced composites. J Mater Environ Sci, 2(4), p.351e6

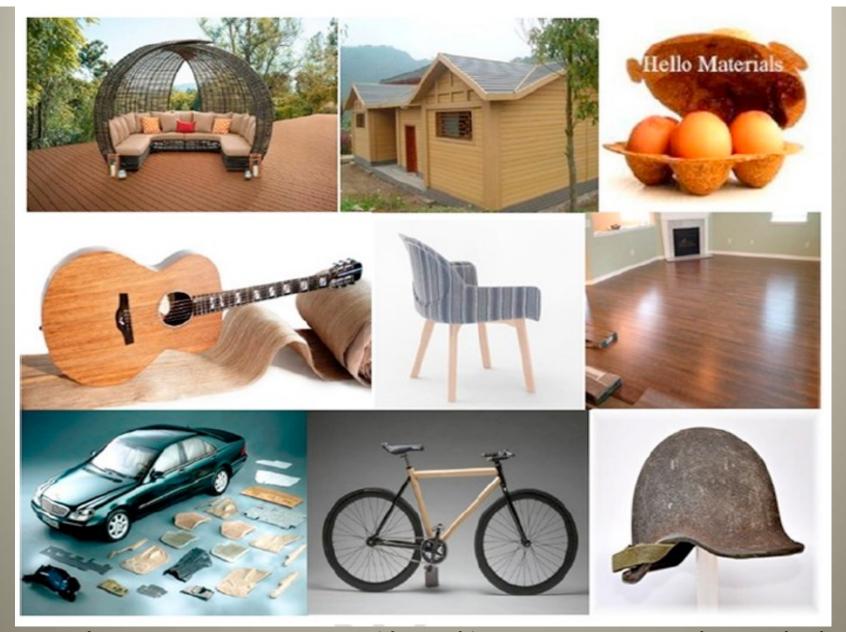

| Processing of natural<br>fiber-thermosetting composites | Processing of natural<br>fiber-thermoplastic composites |
|---------------------------------------------------------|---------------------------------------------------------|
| Hand lay-up and spraying                                | Extrusion                                               |
| Compression                                             | Injection molding                                       |
| Transfer                                                | Thermoforming                                           |
| Resin transfer molding                                  | Compression method                                      |
| Injection molding                                       | Cold pressing                                           |
| Compression injection                                   | Heating                                                 |
| Pressure bag molding                                    | Direct long fiber reinforced thermoplastics             |
| Pultrusion                                              | Filament Winding                                        |
| Vacuum assisted resin transfer molding                  | Foam molding                                            |
| Casting Injection molding                               | Rotational molding, calendaring                         |
| Polyurethane foam molding                               | Co-extrusion                                            |

Table 7. Techniques for the composite preparation with the polymer.

Saba, N., Tahir, P. and Jawaid, M., 2014. A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers, 6(8), pp.2247-2273.

### REVIEW ON APPLICATIONS OF NATURAL FIBER HYBRID COMPOSITES

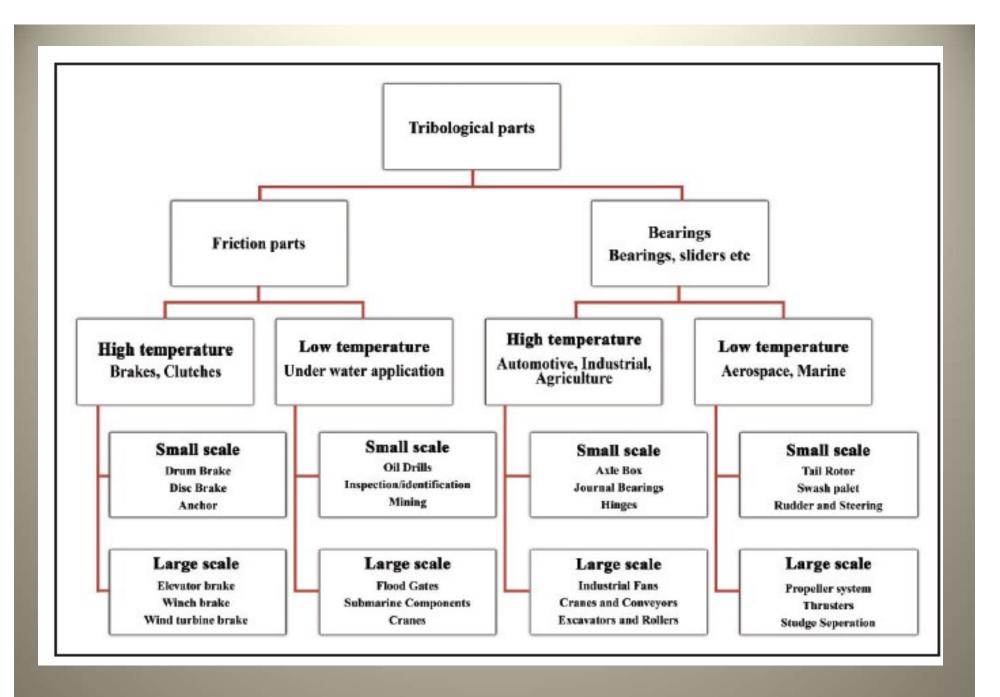
| Potential<br>Application                      | Examples                                                                                                                                                                                                                                                                      |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Automobile,<br>Transportation and<br>Aviation | Door panels, seatbacks, headliners, dash boards, car door, pallets, trunk liners, decking, parcel shelves, spare tyre covers, other interior trim, spare-wheel pan, trim bin, automobile and railway coach interior, boat                                                     |
| Building and construction industry            | Railing, bridge, siding profiles, panels for partition and false ceiling, partition boards, wall, floor, window and door frames, roof tiles, mobile or pre-fabricated buildings which can be used in times of natural calamities such as floods, cyclones, earthquakes, etc,. |
| House hold and utility<br>products            | Table, chair, fencing elements, door panels, interior panelling, Window frames, door-frame profiles, food tray, partition                                                                                                                                                     |
| Electronics appliances                        | Mobile cases, laptopscases                                                                                                                                                                                                                                                    |
| Sports & leisure goods                        | Tennis Racket, ball, bicycle, frames, snowboards                                                                                                                                                                                                                              |
| Storage devices                               | Post-boxes, grain-storage silos, bio-gas containers etc.,                                                                                                                                                                                                                     |
| Furniture                                     | Chair, table, shower, bath units                                                                                                                                                                                                                                              |
| Every day applications                        | Lampshades, suitcases, helmets <sup>27</sup>                                                                                                                                                                                                                                  |



Puttegowda, M., Rangappa, S.M., Jawaid, M., Shivanna, P., Basavegowda, Y. and Saba, N., 2018. Potential of natural/synthetic hybrid composites for aerospace applications. In Sustainable Composites for Aerospace Applications (pp. 315-351). Woodhead Publishing.

# **OBSERVATIONS**

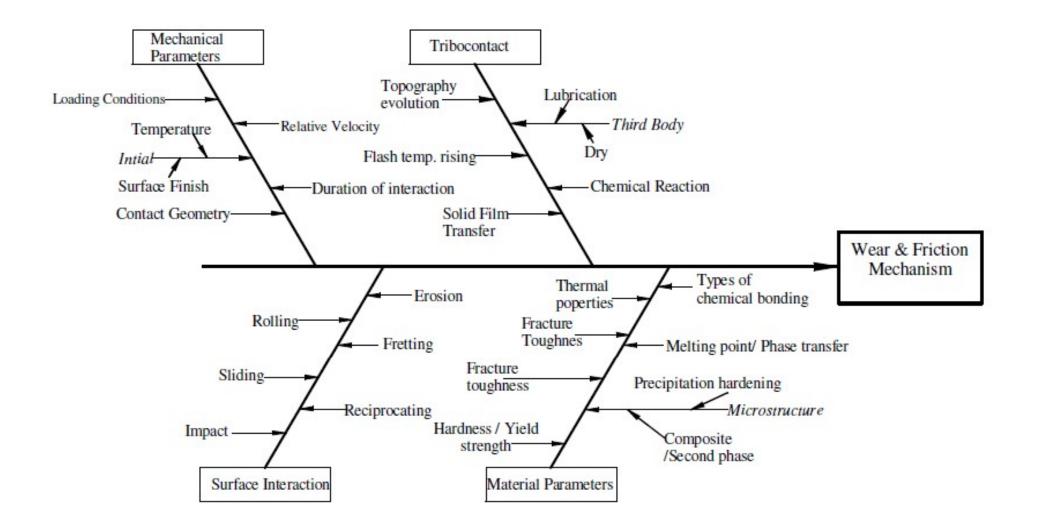
>Plant based natural fiber composites have been demonstrated as an important alternative material for synthetic fiber reinforced polymer matrix composites due to their biodegradable nature.


> Increased utilization of natural fiber as reinforcement for composite materials can diminish the use of synthetic fibers and reduce greenhouse gas emissions.

➢Hybridization with multiple natural and synthetic fiber reinforcements has been recognized as a potential technique to fabricate composites. Moreover, it can enhance certain mechanical properties.

>Incorporation of different natural fibre polymers with synthetic fibres leads to increase the applications and replace the non-renewable materials in the field of engineering and technology.

# TRIBOLOGY

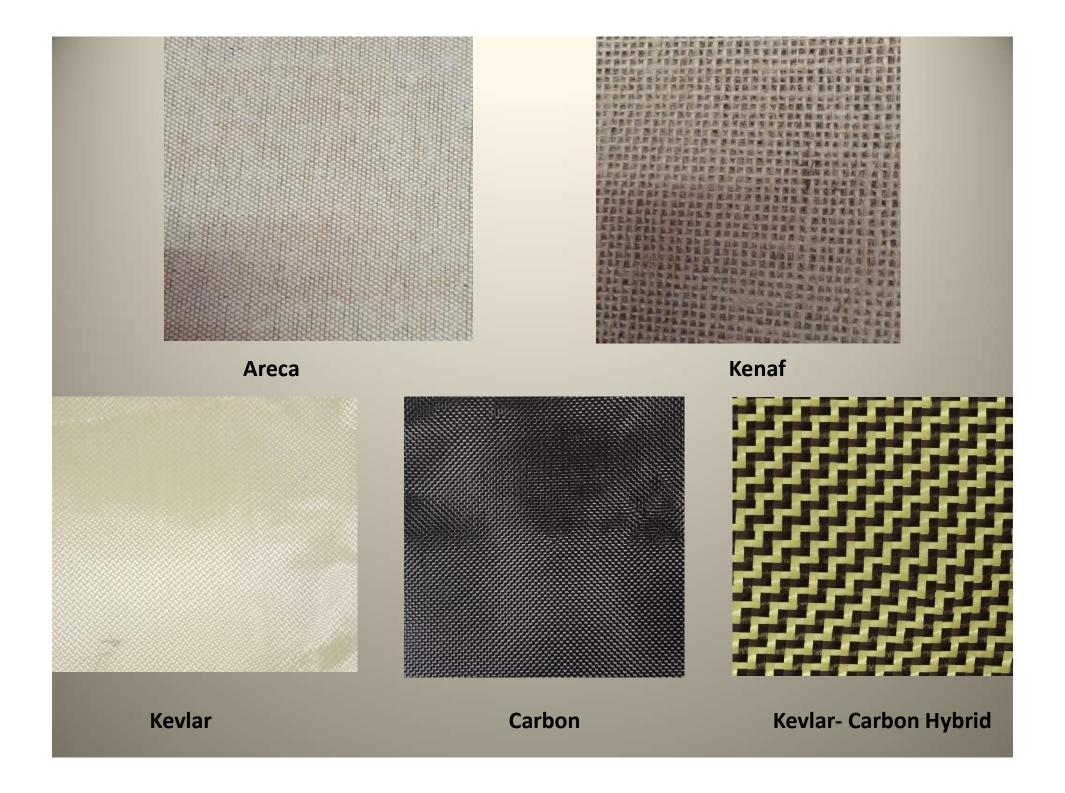

- Tribology is the greek word 'tribo' means rubbing and 'logy' means knowledge. Therefore tribology is the study of friction mechanism between two solid surfaces which have relative motion between them.
- There are clear economic and environmental incentives to aggressively pursue the development of the new materials that can reduce friction and wear.
- Friction and wear cost the economy a staggering amount of money ,energy and materials each year.



| Parameter                      | Measurement device                                      | Study                                                | Ref. |
|--------------------------------|---------------------------------------------------------|------------------------------------------------------|------|
| Surface roughness              | Optical interferometer                                  | ✓ Fiber diameter                                     | 101  |
|                                | Atomic force microscope                                 | ✓ Uniform distribution of clay                       | 102  |
| Surface tension                | Goniometer                                              | ✓ Contact angle                                      | 103  |
| Testing of lubricants friction | Four-ball wear tester                                   | ✓ Effect of load                                     | 104  |
| Friction and wear tests        | Pin-on-disc                                             | <ul> <li>Dry sliding friction</li> </ul>             | 105  |
|                                | Block-on-disk                                           | ✓ Dry / Wet contact                                  | 106  |
|                                | Dry sand rubber wheel                                   | ✓ Three-body abrasive wear                           | 107  |
|                                | Pin-on-drum                                             | ✓ Abrasive wear test                                 | 108  |
|                                | Linear tribo-machine                                    | ✓ Three-body abrasive wear                           | 109  |
|                                | Block-on-ring                                           | ✓ Dry sliding wear                                   | 110  |
|                                | Universal micro-tribometer (ball-on-disk)               | ✓ High temperature tribo-test                        | 111  |
| Surface wettability            | Contact angle system<br>Water contact angle measurement | ✓ Surface contact angle                              | 112  |
| Chemical analysis              | X-ray photoelectron spectroscopy (XPS)                  | ✓ Chemical changes                                   | 113  |
| Imaging technique              | Field-emission scanning electron microscopy             | ✓ Morphological changes                              | 113  |
|                                | Scanning electron microscopy                            | ✓ Interface between fiber                            | 113  |
| Temperature monitoring         | Iron-constantan thermocouple                            | ✓ Temperature at edge of disc                        | 114  |
|                                | Infrared temperature measurement device                 | ✓ Surface temperature                                | 115  |
| Vibration monitoring           | Accelerometer                                           | <ul> <li>Excitation magnitude of response</li> </ul> | 81   |
|                                | Displacement transducers                                | ✓ Deformation measurement                            | 116  |

Table 3. List of measurement techniques related to friction and wear characteristics.

Karthikeyan, S., Rajini, N., Jawaid, M., Winowlin Jappes, J.T., Thariq, M.T.H., Siengchin, S. and Sukumaran, J., 2017. A review on tribological properties of natural fiber based sustainable hybrid composite. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 231(12), pp.1616-1634.




### **Cause and effect diagram of tribological properties.**

Hemanth, K.T., Swamy, R.P. and Chandrashekar, T.K., 2011. Taguchi technique for the simultaneous optimization of tribological parameters in metal matrix composite. Journal of Minerals and Materials Characterization and Engineering, 10(12), p.179.

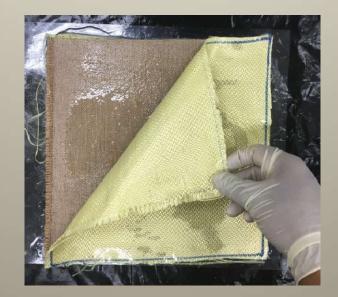
# **OBJECTIVES OF THE WORK**

- To fabricate epoxy based hybrid composites reinforced with natural and synthetic fibers along with different laminate stacking sequences.
- ➤ To evaluate mechanical properties such as tensile, flexural, inter-laminar shear strength (ILSS), impact and micro-hardness characteristics of composites.
- To evaluate the physical properties such as density and void fraction of composites.
- ➤ To examine the interfacial properties of the fractured laminates using scanning electron microscopy (SEM).
- ➤ To apply design of experiments to understand Tribological behaviour of the composites.



| Flax - Carbon - Basalt |                  |                                   |                                   |                  |                    |  |  |
|------------------------|------------------|-----------------------------------|-----------------------------------|------------------|--------------------|--|--|
| Sample No              | Sequence/Layer   |                                   |                                   |                  | Matrix             |  |  |
|                        | 1                | 2                                 | 3                                 | 4                |                    |  |  |
| 1                      | F                | F                                 | F                                 | F                | BE                 |  |  |
| 2                      | F                | F                                 | $\mathbf{F}$                      | F                | Ε                  |  |  |
| 3                      | С                | F                                 | F                                 | С                | BE                 |  |  |
| 4                      | С                | F                                 | $\mathbf{F}$                      | С                | Ε                  |  |  |
| 5                      | В                | F                                 | F                                 | В                | BE                 |  |  |
| 6                      | В                | F                                 | F                                 | В                | Ε                  |  |  |
|                        |                  |                                   |                                   |                  |                    |  |  |
|                        |                  |                                   |                                   |                  |                    |  |  |
|                        |                  | Areca - Car                       | bon - Basalt                      | :                |                    |  |  |
| Sample No              |                  | Areca - Car<br>Sequenc            |                                   |                  | Resin              |  |  |
| Sample No              | 1                |                                   |                                   | 4                | Resin              |  |  |
| Sample No              |                  | Sequenc                           | e/Layer                           |                  | <b>Resin</b><br>BE |  |  |
|                        | 1                | Sequence<br>2                     | e/Layer<br>3                      | 4                |                    |  |  |
| 1                      | 1<br>A           | Sequence<br>2<br>A                | ce/Layer<br>3<br>A                | 4<br>A           | BE                 |  |  |
| 1 2                    | 1<br>A<br>A      | Sequenc<br>2<br>A<br>A            | ce/Layer<br>3<br>A<br>A           | 4<br>A<br>A      | BE<br>E            |  |  |
| 1<br>2<br>3            | 1<br>A<br>A<br>C | Sequence<br>2<br>A<br>A<br>A<br>A | ce/Layer<br>3<br>A<br>A<br>A<br>A | 4<br>A<br>A<br>C | BE<br>E<br>BE      |  |  |

| Flax - Carbon - Kevlar - Hybrid CK |                |       |   |   |       |  |  |  |
|------------------------------------|----------------|-------|---|---|-------|--|--|--|
| Sample No                          | Sequence/Layer |       |   |   | Resin |  |  |  |
| •                                  | 1              | 2     | 3 | 4 |       |  |  |  |
| 1                                  | F              | F     | F | F | EPOXY |  |  |  |
| 2                                  | С              | F     | F | С |       |  |  |  |
| 3                                  | K              | F     | F | K |       |  |  |  |
| 4                                  | Н              | F     | F | Н |       |  |  |  |
| 5                                  | С              | С     | С | С |       |  |  |  |
| 6                                  | K              | K     | K | K |       |  |  |  |
| 7                                  | Н              | Н     | Н | Н |       |  |  |  |
|                                    |                |       |   |   |       |  |  |  |
| Areca- Carbon - Kevlar - Hybrid CK |                |       |   |   |       |  |  |  |
| Sample No                          |                | Resin |   |   |       |  |  |  |
|                                    | 1              | 2     | 3 | 4 |       |  |  |  |
| 1                                  | F              | F     | F | F | EPOXY |  |  |  |
| 2                                  | С              | F     | F | С |       |  |  |  |
| 3                                  | K              | F     | F | K |       |  |  |  |
| 4                                  | Н              | F     | F | Н |       |  |  |  |
| 5                                  | С              | С     | С | С |       |  |  |  |
| 6                                  | K              | K     | K | K |       |  |  |  |
| 7                                  | Н              | Н     | Н | Н |       |  |  |  |
|                                    |                |       |   |   | 07    |  |  |  |
















# CONCLUSION

- The hybrid composites developed with the combination of natural and synthetic fibres shows enhanced mechanical strength and finds application in higher loading tribological applications.
- The effect of layering sequence of hybrid composites also has its influence over the properties of the composites.
- It is found that only very little work has been done using natural fiber based hybrid composites in different matrix systems on tribological characteristics.
- Replacing existing synthetic materials from natural/bio based materials can reduce the impact on environmental issues .

# **PROGRESS OF THE WORK**

- Literature review done and Based on the review one journal Paper and one book chapter is published.
- Selection of Materials and fabrication of the composites using synthetic and Natural fibres.
- Mechanical Characterization of the Prepared composites, SEM, TGA completed.

# WORK TO BE DONE

Design of Experiments for conducting Tribology tests.

> Analysing the results obtained and publishing paper.

### JOURNALS

- T G Yashas Gowda, Sanjay M R, Jyotishkumar Parameswaranpillai, Suchart Siengchin, "Natural Fibers as Sustainable and Renewable Resource for Development of Eco-friendly Composites: A Comprehensive Review" Frontiers in Materials, Polymeric and Composite Materials, 2019. DOI: 10.3389/fmats.2019.00226 (IF: 2.689, SCI Indexed) (Published)
- K N Bharath, Madhu P, Yashas Gowda T G, Sanjay M R, Suchart Siengchin, Vinod Kushvaha, "Extraction and Characterization of discarded waste of Moringa oleifera fruit fiber as a potential eco-friendly reinforcement for biocomposites" SPRINGER, Journal of Polymers and the Environment (Under Review). (SCI Indexed)
- 3. K N Bharath, Madhu P, Yashas Gowda T G, Akarsh Verma, Sanjay M R, Suchart Siengchin, "A novel approach for the development of bio-fiber based composites for printed circuit board application" SAGE, Journal of Composite Materials (Under Review). (SCI Indexed)
- K N Bharath, Madhu P, Yashas Gowda T G, Akarsh Verma, Sanjay M R, Suchart Siengchin, "Mechanical and chemical properties evaluation of sheep wool fiber reinforced vinylester/polyester composites" ASTM, Materials Performance and Characterization (Under Review). (SCI Indexed)
- A Vinod, Yashas Gowda T G, R Vijay, D Lenin Singaravelu, Sanjay M R, Suchart Siengchin, Munish Kumar Gupta, Muhammad Jamil, "Physiochemical, Thermomechanical, dynamic mechanical, water absorption and Morphological Analysis of surface tailored and characterized novel Muntingia Calabura bark fiber reinforced fully biobased bioepoxy marix composites" ELSEVIER, Composites Part B (Under Review). (SCOPUS Indexed)

### BOOK

 Sanjay M R, Jyotishkumar P, Yashas Gowda T G, Suchart Siengchin, M.Özgür Seydibeyoğlu, "Nano-Particles Based Polymer Composites", Elsevier Inc. (In Progress)

### **BOOK CHAPTERS**

- 1. P Madhu, **T G Yashas Gowda**, Sanjay M R, Jyotishkumar Parameswaranpillai, Suchart Siengchin, "Effect of process engineering on the performance of hybrid fiber composites" In book. Hybrid Fiber Composites. Materials, Manufacturing, Process Engineering. Wiley. (In Press). (Scopus Indexed)
- T.G Yashas Gowda, Sanjay M R, Jyotishkumar Parameswaranpillai, Suchart Siengchin, Klaus Friedrich, "Tribological Applications of Polymer Composites" In Book. Tribology of Polymer Composites: Characterisation, Properties, and Applications, Elsevier Inc. (In Press). (Scopus Indexed)
- **3. Yashas Gowda T G**, Vinod A, Madhu.P.Sanjay M R, Jyotishkumar Parameswaranpillai, Suchart Siengchin "**Plastics in automotive applications**", Encyclopedia of Materials: Plastics and Polymers.Elsvier (**In Progress**)

# THANK YOU