

Tool-Life Improvement by Deep-Cryogenic Treatment

Mr. Kaweewat Worasaen Ph.D. student in Materials and Production Engineering

Advisor Asst. Prof. Dr. Karuna Tuchinda Co-Advisor Assoc. Prof. Dr. Piyada Suwanpinij

The Sirindhorn international Thai-German Graduate School of Engineering (TGGS) King Mongkut's University of Technology North Bangkok, Bangkok

Introduction

The Sindhom International Thai-German Graduate School of Engineering

Longer tool life required !!

	Chemical compositions (wt%)										
C Si Mn Cr Mo Ni V Fe											
SKH51 (AISI M2)	0.94	0.31	0.29	3.78	4.67	0.26	1.75	79.9			
YXR3	YXR3 0.62 1.36 0.41 4.15 2.55 0.06 1.69 88.7										

Microstructure of HSS

Chemical compositions of SKH51 (%wt.)

С	Si	Mn	Cr	W	Мо	V	Со
0.9	0.3	0.4	4.2	6.5	5.0	2.0	-

Microstructure of SKH 51

Chemical compositions of YXR3 (%wt.)

С	Si	Mn	Cr	W	Мо	V	Со
0.6	1.5	0.4	4.3	-	2.9	1.8	-

- The amount of carbide in YXR3 is higher than SKH51
- The smaller carbides (dia.1.38 um) are randomly distributed along YXR3 compare to SKH51(dia. 2.19 um)

Wear of Tool Steels

Archard's equation

Modification of Archard's equation

The wear coefficient k_0 , is defined as the probability that decohesion of a certain volume of matter occurs at a given area

This can be confirmed that wear rate of materials is controlled not only Hardness but Toughness

Wear testing Results

The Stindborn International TGG Stindborn International Graduate School of Engineering

Wear volume loss of high-speed steel in 3N load

Testing Parameters							
Load	3,5,7 N						
Speed (Motor speed)	500 rpm						
Sliding distance	5000 m						
Ball Diameter	6 mm						
Ball Material	WC-Co						

Wear volume loss of high-speed steel in 5N load

Wear volume loss of high-speed steel in 7N load

Tool Life Improvement by DCT

Plot of cumulative wear volume loss (CWVL) versus sliding distance (SD) for differently treated specimens tested at sliding velocity of 1.25ms-1, [2]

The improvement in wear resistance is as a result of five-main phenomena:

- 1. The reduction or elimination of retained austenite (γR)
- 2. Increased precipitation
- 3. Refinement of secondary carbide
- 4. Homogeneous the microstructure
- 5. Augmentation of volume fraction of carbide.

Carbide Effect on Fracture Toughness

The formation of microvoids next to particles (inclusions, precipitates) within the region of intense plastic strain at the crack tip

Hahn and Rosenfield's strain criterion

$$K_{IC} \equiv \sqrt{J_{IC} \times E} = \sqrt{E \cdot \sigma_{YS} \cdot \varepsilon_f \cdot l_o}$$

 J_{IC} is the critical J integral, E is Young's modulus in plane stress, σ_{YS} is the yield stress,

 ε_f is the equivalent critical local fracture strain,

 l_o is the characteristic microstructural distance for fracture.

Many literatures reported that the fracture toghness decrease when decreasing of the distance between these particles described as $K_{IC} \propto f^{-1/6}$

$$K_{IC} = \sqrt{E \cdot \sigma_{YS} \cdot \varepsilon_f \cdot d_p} f^{-1/6}$$

SEM & EDS results of SKH51^{TGGS} Craduate School

of Engineering

SEM micrograph of Microstructure of SKH51 before cryogenic treatment

Microstructure of SKH51 before cryogenic treatment

EDS results of SKH51 (%wt.)

Spectrum	С	0	V	Cr	Fe	Мо	W	Total	MC is Vanadi
Spectrum 1	12.53		14.20	3.86	45.12	10.55	13.74	100.00	Carbide (VC)
Spectrum 2	5.67	2.29	2.22	3.47	40.70	17.57	28.08	100.00	
Spectrum 3	4.95	1.71	2.87	3.00	28.94	23.71	34.80	100.00	$(Fe,Mo)_{3}W_{3}C$
			1-1						

Chemical compositions of SKH51 (%wt.)

С	Si	Mn	Cr	W	Мо	V	Со
0.94	0.31	0.29	3.78	5.85	4.67	1.75	0.55

MC is Vanadium

Carbide Types Effect

SEM micrographs of the cross-sectioned area beneath the fracture surface of the circumferentially notched tensile specimen tested (a) and (b) at -75 C and (c) and (d) at -140 C, showing the cracking and void initiation at carbides. The tensile axis is vertical for the micrographs. Nital etched. [1]

Heat Treatment Profile of DCT Analysis

	DCT condition investigated in this research										
No.	Name DCT Temperature (°C) DCT Holding time (Hr) Tempering temperat										
1	-140x12_T200	-140	12	200							
2	-200x12_T200	-200	12	200							
3	-140x36_T200	-140	36	200							
4	-200x36_T200	-200	36	200							

Mechanical Testing

Scratch test for K1C Determination

Ft and Penetration Depth Selected Based on Acoustic Emission Signal

Scratch Testing Vs Charpy Impact Test

DCT Parameters Effect on SKH51

DCT Parameters Effect on YXR3

Η	la	rd	n	e	<u>S</u> :	<u>S</u>	

• YXR3→	786 HV 🗲 820 HV	(15% increase)
<u>Toughness</u>		
• SKH51→	30 → 33 Mpa/m^-1/2	(† 10% increase)

Chemical compositions (wt%)									
C Si Mn Cr Mo Ni V Fe								Fe	
YXR3	0.62	1.36	0.41	4.15	2.55	0.06	1.69	88.7	

Wear Testing Results

Volume loss of SKH51 under different DCT conditions

Volume loss of YXR3 under different DCT conditions

Wear Behavior

Wear testing Results

	SKH51							
	Conventional	-140 °C		-200 °C				
	treatment	12 hr	36 hr	12 hr	36 hr			
Wear Rete (mm3/m) (x 10^{-8})	11.7	3.67	3.00	4.00	4.00			
Improvement Percentage (%)	-	69 %	74 %	66 %	66 %			

Volume loss of SKH51 under different DCT conditions

What is X-ray Diffraction ?

XRD is a technique used for determining the atomic and molecular structure of a crystal.

Keun Chul Hwang, Sunghak Lee, Hui Choon Lee., "Effects of alloying elements on microstructure and fracture properties of cast high speed steel rolls Part I: Microstructural analysis"., Materials Science and Engineering A254 (1998) 282–295 21

Basic concept of XRD

Where:

 $\boldsymbol{\lambda}$ is the wavelength of the radiation used,

d is the inter-planar spacing involved.

 θ is the angle between the incident (or diffracted) ray and the relevant crystal planes.

n is an integer, referred to as the order of diffraction.

Basic concept of XRD

Geometry of an X-Ray Diffractometer

Bragg-Bentano Setup

The earliest flat-plate diffractometers had poor intensities and peak widths due to lack of focussing. By contrast the modern flat-plate diffractometer has both good peak intensities and excellent resolution due to focussing of the diffracted beam. This reflection geometry, in which the divergent and diffracted beams are focussed at a fixed radius from the sample position, is commonly referred to as Bragg-Brentano geometry.

The term *Debye-Scherrer* is named after the originators, Debye, Scherrer and Hull, and is one of the oldest known powder diffraction geometries, though originally it was used only with photographic film on a "powder diffraction camera". It uses a near-parallel incident beam of X-rays with sufficient cross-section to bathe the whole powder-sample. One of its virtues is its simplicity as illustrated by the following schematic of the Debye-Scherrer camera/diffractometer.

Complete Debye-Scherrer rings from tetragonal martensite

General information content of PXRD data

<u>Ref.</u> R.E. Dinnebier & S.J.L. Billinge, Powder diffraction theory and practice 2008.

- Unit cell lattice parameters and Bravais lattice symmetry.

DCT Effect by XRD SKH51

DCT Effect by XRD SKH51

DCT Parameters Effect on SKH51

DCT Effect by XRD SKH51

DCT Parameters Effect on YXR3

Conclusions

1) DCT process improves the wear resistance of high-speed steel up to 80% compared to the conventional heat-treatment process.

- 2) DCT refining both carbide precipitation and martensite matrix in the microstructure resulting in wear mechanism improvement in both in Stage 1 and Stage 2.
- 3) The effect of DCT on tool materials need to be investigated separately
- 4) Scratch testing technique is a useful technique capturing the significant change in microscopic level (micro toughness) which cannot be investigated by conventional bulk testing technique i.e. Charpy impact test.
- 5) XRD is a useful technique to study the microstructure change, phase identification and residual stress analysis.

