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Introduction

Figure 7: Materials Used Most Commonly for Major Vehicle Structure Components in the Current Fleet
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Chemical compositions (wt%)

C Si Mn Cr Mo Ni V Fe
SKH51 (AISI M2) | 0.94 0.31 0.29 3.78 4.67 0.26 1.75 79.9
YXR3 0.62 1.36 0.41 4.15 2.55 0.06 1.69 88.7




Microstructure of HSS

Chemical compositions of YXR3 (%wt.)

Chemical compositions of SKH51 (%wt.)
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« The amount of carbide in YXR3 is higher than SKH51
« The smaller carbides ( dia.1.38 um) are randomly
distributed along YXR3 compare to SKH51(dia. 2.19 um)
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Archard’s equation Modification of Archard’s equation
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The wear coefficient kg, is defined as the probability that decohesion of a
certain volume of matter occurs at a given area

This can be confirmed that wear rate of materials is controlled
not only Hardness but Toughness




Wear testing Results 608 B
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Tool Lite Improvement by DCT

—a— CONT —+— CT
—a&— SCT —o— DCT

N
o

20
Flank wear
bandwidth (FW) W
15 | ¢
Crater wear ¥
Notch wear
10 H
Flank wear f

200 300 400
S, (m)

Cumulative wear volume loss, CWVL (mm°)

Nose radius wear

0 . 1 s 1 . 1 N 1 .
0.0 04 0.8 1.2 1.6 2.0

Wear of cutting tools [1] Sliding distance, S_ (x10°, m)

Plot of cumulative wear volume loss (CWVL) versus sliding distance (SD) for differently
treated specimens tested at sliding velocity of 1.25ms-1, [2]

The improvement in wear resistance is as a result of five-main phenomena:
1. The reduction or elimination of retained austenite (yR)

2. Increased precipitation

3. Refinement of secondary carbide

4. Homogeneous the microstructure
5. Augmentation of volume fraction of carbide.




Carbide Effect on Fracture Toughness

Hahn and Rosenfield’s strain criterion

KICE \/]ICXE: E'Gys'gf’lo

Increasing stress

Jic is the critical J integral,

E is Young’s modulus in plane stress,

Oys is the yield stress,

&r is the equivalent critical local fracture strain,

The formation of microvoids next to particles (incldgjons, [, is the characteristic microstructural distance for fracture.
precipitates) within the region of intense plastic strai

the crack tip

6t crit

—_—
Crack extension
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Spectrum 2
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Apm Electron Image 1
SEM micrograph of Microstructure of SKH51 before cryogenic treatment Microstructure of SKH51 before cryogenic treatment
EDS results of SKH51 (%wt.)

Spectrum C (@) V Cr Fe Mo W Total M C |S Va Na d | um
Spectrum 1 12.53 1420 | 386 | 4512 | 1055 | 13.74 10000 || Carbide (VC)
Spectrum 2 5.67 2.29 2.22 3.47 40.70 17.57 28.08 100.00 .

MeC Is
Spectrum 3 4.95 1.71 2.87 3.00 28.94 23.71 34.80 100.00
(Fe,Mo);W;

Chemical compositions of SKH51 (%wt.)
C Si Mn Cr W Mo V Co
0.94 0.31 0.29 3.78 5.85 4.67 1.75 0.55 9
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Carbide Types Effect Tz
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SEM micrographs of the cross-sectioned area beneath the fracture surface of the circumferentially notched tensile
specimen tested (a) and (b) at =75 C and (c) and (d) at =140 C, showing the cracking and void initiation at carbides.
The tensile axis is vertical for the micrographs. Nital etched. [1]




Heat Treatment Profile of DCT Analysis

Austenitizing Heat Treatment of SKH51
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DCT condition investigated in this research

No. Name DCT Temperature (°C) | DCT Holding time (Hr) | Tempering temperature (°C)
1 -140x12_T200 -140 12 200
2 -200x12_T200 -200 12 200
3 -140x36_T200 -140 36 200
4 | -200x36_T200 3200 36 200




Mechanical Testing
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Scratch test for K1C Determination

Free energy contribution

Displacement-gradient contribution




Ft and Penetration Depth Selected Based on

Acoustic Emission Signal
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Scratch Testing Vs Charpy Impact Test
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Charpy Impact Test

DCT condition investigated in this research
No. Name DCT Temperature (°C )| DCT Holding time (Hr) | Tempering temperature (°C)
T | -140x12 T200 -140 12 200
2 | -200x12_T200 -200 12 200
3 | .140x36_T200 -140 36 200
4 | -200x36_T200 -200 36 200
Chemical compositions (wt%)
C Si Mn Cr Mo Ni Vv Fe
YXR3 0.62 1.36 0.41 415 2.55 0.06 1.69 88.7




DCT Parameters Effect on SKH51

K1c and Hardness of SKH51 Vs. Treatment conditions
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Chemical compositions (wt%)
C Si Mn Cr Mo Ni \ Fe
SKH51 (AISI M2) 0.94 0.31 0.29 3.78 4.67 0.26 1.75 79.9




DCT Parameters Effect on YXR3

K1c and Hardness of YXR3 Vs. Treatment conditions
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Chemical compositions (wt%)
C Si Mn Cr Mo Ni V Fe
YXR3 0.62 1.36 0.41 415 2.55 0.06 1.69 88.7




Wear Testing Results
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Wear Behavior
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Wear testing Results

SKH51
Conventional -140 °C -200 °C
treatment 12 hr 36 hr 12 hr 36 hr
Wear Rete (mm3/m) (x1078) 11.7 3.67 3.00 4.00 4.00
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What is X-ray Diffraction ?
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XRD is a technique used for determining the
atomic and molecular structure of a crystal.
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Basic concept of XRD

crystal

nNA=2dsino

A 1s the wavelength of the radiation used,
d is the inter-planar spacing involved.

0 1s the angle between the incident (or diffracted) ray and the relevant crystal planes.
n is an integer, referred to as the order of diffraction.




Basic concept of XRD
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Geometry of an X-Ray Diffractometer
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Bragg-Bentano Setup

XRD with Bragg-Brentano geometry Detector

Divergence

Anode‘, Slit

Holder

The earliest flat-plate diffractometers had poor intensities and peak widths due to lack of
focussing. By contrast the modern flat-plate diffractometer has both good peak intensities and
excellent resolution due to focussing of the diffracted beam. This reflection geometry, in which
the divergent and diffracted beams are focussed at a fixed radius from the sample position, is
commonly referred to as Bragg-Brentano geometry.




Debye-Scherrer Setup

XRD with Debye-Scherrer geometry (a) 4 (b)

Pi’;'gg‘ B Azimuthal

detector AV

synchrotron h e
white monochromy BB  Diffracted
beam ' beam Incident

beam

The term Debye-Scherrer is named after the originators, Debye, Scherrer and Hull, and is
one of the oldest known powder diffraction geometries, though originally it was used only
with photographic film on a "powder diffraction camera". It uses a near-parallel incident
beam of X-rays with sufficient cross-section to bathe the whole powder-sample. One of its

virtues is its simplicity as illustrated by the following schematic of the Debye-Scherrer
Camel‘a/dlffl‘actomete I a) Schematic of the synchrotron X-ray diffraction setup, (b)

Complete Debye-Scherrer rings from tetragonal martensite




General information content of PXRD data
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Applications

- Phase Identification
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- Unit cell lattice parameters and Bravais lattice symmetry.

- Residual Stress and Strain

Polycrystalline solid
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DCT Effect by XRD SKH51

The carbide identified by XRD

-
N
0
o
. 282875
m 222
m w
1324 | 5 =
— [=]
ezzl| /3¢
[ e 1"-—-'
o o [ S
2 = g =
|'..|l

SKH51_-200x36_T 200

/ SKH51_-200x12_T200

|
c

Intensity
)

SKH51_-140x36_T200

. - = N — e,
SKH51_-140x12_T200
b, B i _..J""\.. P —
SKH51 Conventional
- —A-.......-......-.-.-..,...-.-.-A— R e

71 r I r r1r r Tt r 1 r 1 r°r 1 °r 1T T° 1
30 40 20 60 70 80 90 100 110 120




DCT Effect by XRD SKH5T
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DCT Parameters Effect on SKH51
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DCT Effect by XRD SKH5T

Debye ring(3D)

SKH51 Conventional .
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DCT Parameters Effect on YXR3

K1c and Hardness of YXR3 Vs. Treatment conditions
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Conclusions TGGS 2

1) DCT process improves the wear resistance of high-speed steel up to 80% compared to

the conventional heat-treatment process.

2) DCT refining both carbide precipitation and martensite matrix in the microstructure
resulting in wear mechanism improvement in both in Stage 1 and Stage 2.

3) The effect of DCT on tool materials need to be investigated separately

4) Scratch testing technique is a useful technique capturing the significant change in
microscopic level (micro toughness) which cannot be investigated by conventional bulk
testing technique i.e. Charpy impact test.

5) XRD is a useful technique to study the microstructure change, phase identification and
residual stress analysis.
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