High Strength Forged Steel and Process Design

Piyada Suwanpinij, TGGS, KMUTNB

piyada.s.mme@tggs-bangkok.org Metallurgy for Forging Process Design and Tool Life Improvement vs. XRD Forum Wed 29 January 2020 Outline

State of the Art

- Products from Microalloyed Forged Bars
- Microstructure of Air-Cooled Microalloyed Forged Steels
- Strength of Steel and Strengthening Mechanisms

2 Method

- Industry-near Forging Experiment
- Metallography: LOM for phase fraction and grain size
- Mechanical Properties: tensile testing, hardness, impact
- Fraction of Precipitates: Synchrotron XAS

Results and Discussion

- Cooling Curves with Recalescence
- Calculated Contribution from each Strengthening Mechanism

Microalloyed Forged Steels

Typical Applications in Automotive Industry

•Source: Basic Knowledge Forgings – Significance, Design, Production, Application, Industrieverband Massivumformung

Microalloyed Forged Steels

- Quenched and tempered steel (Q&T) needs an additional heat treatment (left picture)
- Microalloyed steels achieve final properties during controlled cooling directly after forging (right picture)
- Shorter process chain compared to Q&T steels → No costs for additional heat treatment
- No risk for crack formation during quenching
- Low cost alloying concept
- High strength

Microalloyed Forged Steels

38MnVS6 as an example for a typical steel and its transformation behavior

Microalloyed Forged Steels - Adjusting Phase Fractions

Source: H. Dickert et al, Steels in Cars and Trucks 2017

Strength of Different Matrices according to Pickering

Ref.: F.B. Pickering, in Transformation and Hardenability in Steels, Climax Molybdenum Co., Ann Arbor, Michigan, 1967, p. 109.

Contribution to Yield Strength in Mild and HSLA Steels

Precipitation Hardening: Cutting vs. Looping

Precipitation Hardening in Ferrite-Pearlite

S. Zajac, T. Siwecki, W.B. Hutchinson and R. Lagneborg: Strengthening Mechanisms in Vanadium Microalloyed Steels Intended for Long Products, ISIJ international 38.10 (1998), pp. 1130-1139

Industrial Process

Final Cooling on the conveyor belt is controlled by:

- Speed of the conveyor belt
- Use of fans (to increase cooling rate)
- Covering the conveyor belt (to reduce the cooling rate).

Method: Industry-near Process

Open die manual forging on a forging hammer

Controlled cooling by using different pressures of compre

Temperature measurement with a pyrometer

Results: Cooling Curves with Recalescence

Results: Cooling Curves with Recalescence

100 micrometer

Ø 30 mm. still air

Spannung (N/mm²)

Calculation of Strengthening Factors

Calculation of the Pearlite Interlamellar Spacing

Results: Cooling Curves with Recalescence

Results: Cooling Curves with Recalescence

Calculation of the Precipitation Hardening

$$YS = f_{\alpha}\{35 + 58(\%Mn) + 17.4(D_{\alpha})^{-0.5}\} + (1 - f_{\alpha})\{178 + 3.8(\lambda_{p})^{-0.5}\} + 63(\%Si) + 425(\%N)^{-0.5} + \Delta YS_{p}\}$$
$$\Delta YS_{p,Orowan-Ashby} = \frac{0.8MGb}{2\pi\sqrt{1 - \nu}L_{VC}} \ln\left(\frac{x}{2b}\right) (MPa)$$
$$L_{VC} = \sqrt{\frac{2}{3}} \left(\sqrt{\frac{\pi}{f}} - 2\right) \left(r_{VC}\right) (m \qquad x = 2\sqrt{\frac{2}{3}}r_{VC}$$

M – Tailor Factor, G – Shear modulus, b – Burger vector, v - Poison's ratio

The 2 Unknown Strengthening Fractions

1. Free Nitrogen

Too difficult (for me ;-))

2. Precipitation hardening

Theoretically by measuring volume and average radius of the precipitates for the mean distance between particles

$$\Delta Y S_{p,Orowan-Ashby} = \frac{0.8MGb}{2\pi\sqrt{1-\nu}L_{VC}} \ln\left(\frac{x}{2b}\right) (MPa)$$

$$L_{VC} = \sqrt{\frac{2}{3}} \left(\sqrt{\frac{\pi}{f}} - 2 \right) * r_{VC} (m)$$

Calculation of Precipitates Fraction vs. Dissolved Fraction

Synchrotron XAS for the Precipitation Fraction

surrounding atoms

$$\chi(k) = \sum_{f} \frac{S_0^2 N_j}{kR_j^2} \left| f_j^{eff}(k, R_j) \right| \sin[2kR_j + \varphi_j(k)] e^{-2\sigma_j^2 k^2} e^{-\frac{R_j}{\lambda(k)}}$$

XAS Spectra on the Samples and Standard

Calculation of Precipitates Fraction vs. Dissolved Fraction

Results on XAS Fractions for All Samples

Hooray!!! All Terms can be Solved!!!

Conclusions

Forged Components can be Forged and Air Cooled Without Heat Treatment

Extra Ordinary Strength from Conventional Composition, mainly from Pearlite

Process Window for Different Bar Sizes can be Determined

27-40% of Vanadium is still in the Solid Solution

At Highest Cooling Rate (Highest Air Pressure), Lowest Fraction Contributed by Precipitation Hardening

The Methodology can be Followed in the Industry – Both Production and R&D

6

Acknowledgement

GEORGSMARIENHÜTTE GMBH - WWW.GMH-GRUPPE.DE/DE-EN/