Workshop "Metallurgy for Forging Process Design and Tool Life Improvement and XRD Forum"

2020 January 29th: TGGS (KMUTNB), Bangkok

Panalytical technologies to improve signal to noise ratio; investigation of ferrous and non-ferrous alloys by XRD

XRD application specialist: Dr. Matteo Pernechele

Mirrors for Bragg-Brentano geometry Mirrors provide a divergent beam with high spectral purity

- BBHD (Bragg-Brentano High Definition) is a divergent incident beam module for high-quality Bragg-Brentano data with an energy resolution of < 450 eV (removes K!).</p>
- Available for Cu and Co radiation
- > It provides higher intensities than conventional Bragg-Brentano optics (Slit optics + K_{β} filter)
- It provides a significantly improved, smooth background and hence better detection limits (trace phases, amorphous components)
- Better low-angle performance than slit optics

Reduced excitation of fluorescence Malvern Panalytical January 29, 2020

2theta [°]

PIXcel^{1D} & PIXcel^{3D} Detector

Empyrean and Aeris systems

Detector is optimized for Cr, Co, Cu radiation

Improved detection efficiency (~15% more)

Increased linearity range $(0 - 25*10^6 \text{ cps/column})$

0D, 1D, 2D and 3D

55 µm x 55 µm (sharp image)

Point spread function 1 pixel (sharp image, no blur)

High dynamic range (>10¹⁰)

Two levels energy discrimination

True photon counting

No need for recalibration

Fe bearing ore: Aeris case study

Detector PHD settings

Detectors have the capability to define an energy window for the detected pulses, controlled by the pulse height distribution (PHD) electronics.

The fluorescence-induced background can be reduced by setting the lower level closer to the energy of the used radiation.

Signal to noise Aeris Case Study: Iron ore

- How good are your XRD data?
- Can we detect small impurities?
- How can we optimize the instrumental setup?

$$\frac{\text{Signal to noise}}{N} = \frac{I - B}{3\sqrt{B}}$$

where I = signal intensity, $B_{\text{Malvern}} = background intensity$

50 sec measurement with Aeris (Copper Tube) Signal to noise as a function of PIXcel Detector PHD levels

XRD scans with different PHD minimum values Lower signal and lower background. But S/N?

TGGS – XRD on metals

© 2018 Malvern Panalytical 1/29/2020

Standard vs Optimum setup for iron samples Renormalize scans to show same max intensities

Same max intensity, different background and S/N

Comparisons with Co radiation Aeris-Co vs Aeris-Cu

Without the energy discrimination of the PIXcel detector, a measurement of <u>10</u> <u>minutes on Aeris-Co would take <u>4 hours</u> on Aeris-Cu (same S/N). With optimized PHD setting, same data quality can be obtained in <u>40 minutes</u>.</u>

Rietveld Refinement using HighScore Plus

Goethite, Hematite, Quartz. 75 wt% of Fe₂O₃

Chemistry Ca	lculate	51								
Use input form	iulas fr	om dat	ta set: or	ł						
Ent	er Forn	nul <u>a</u>	6							
Show Eleme	nts	S	now <u>O</u> xides							
Р	lease c	lick on	a Show butto	e						
Input/Output	Matrix	View	Grid View (A	1						
Formula	F	Phase								
List		Totals								
H2O		4.77								
SiO2		18.76								
Fe203		76.18								
Sum of Output		99.71								

Conclusion

• Cobalt tube is preferable to Copper tube for analyzing iron ore and steel (Co is 2400% better)

- Panalytical PIXcel detector can filter out fluorescence radiation
- PIXcel help bridging the gap between Copper and Cobalt tube (Co is "only" 400% better)
- PIXcel is available for older model (Xpert powder) and newer models (Aeris, Empyrean) and 1/29/2020

Complete XRD analysis of steel

with Empyrean (Co tube)

Peak position \rightarrow residual stress

How can it be measured?

Single {hkl} methods (ω-stress, χ-stress)

- the position of a single reflection (usually > 100 °2 θ) is measured at different $\psi \& \phi$.
- χ -stress : sample is tilted using a cradle
- - ω -stress : the goniometer is tilted with respect to the horizontal sample
- positive and/or negative tilts (both directions only required for shear stresses)

Peak intensity \rightarrow preferred orientation/texture

Preferred orientation

Ni coating on steel

Cu sheet

111 200

220

Solutions for automotive

Texture – General information

Depending on the texture in the material the sum of all crystallites will produce specific features characteristic for a certain type of texture

A good texture analysis is only possible if sufficient particle statistics are present (spot size >> average grain size)

• Examples of typical texture types and schematics of characteristic pole figures

Superior peak-to-background Auto adjust of angular resolution

iCore

Auto adjust

beam foot print

Auto switch powder/parallel beam

dcore

2 Steel Samples: before and after tempering

XRD Analyses using Empyrean:

• phase composition (retained austenite), crystallinity, texture and residual stress.

Sample-2 © 2018 Malvern Panalytica

Webin as "XRD on metals"

1/29/2020

What can we learn using XRD?

Results – Phase ID

Sample-2 showing a significantly higher Austenite signal than Sample-1

Results – Residual stress

Full tensor residual stress measurements classical χ -stress approach.

Hence the sample was tilted in χ and measured in all sample 4 directions.

Residual stress (peak position at different tilts)

Malvern

Residual stress (peak position at different tilts)

0.0

0.1

0.2

0.3

0.4

0.5

sin² (Psi)

0.6

0.7

0.8

0.9

1.0

Texture (peak intensity at different tilts)

Solutions for automotive

Pole figures of the {110}, {200}, and {211} reflections of Ferrite were measured .

Very similar pole figures: rolling texture.

Sample-1 stronger preferential orientation (supported by the K-factors)

Sam	ple-1	Sample-2						
{hkl}	K- factor	{hkl}	K- factor					
110	0.38	110	0.40					
200	1.78	200	1.48					
211	1.36	211	1.29					

Results summary

	Pl comp	hase position	Crystal	Т	exture	Residual stress			
	Ferrite [wt%]	Austenite [wt%]	size [nm]	strain [%]	type	K-factors		σ ₁₁ [MPa]	σ ₂₂ [MPa]
Sample-1	89.9	10.1	F: 66	0.11	rolling texture	(111) (200) (220)	0.38 1.78 1.36	-51	0
Sample-2	99.3	0.7	F: 70	0.08	rolling texture	 (111) 0.40 (200) 1.48 (220) 1.29 		-34	0
Temperature heating ferrite tempering martensite tempering retained austenite?									

- Panalytical Empyrean diffractometer provide a wide range of techniques for the characterization of metals and alloys
- As a non-destructive, bulk technique XRD (vs SEM, TEM, EBSD)
- Panalytical Empyrean represents a fast and complete solution for metal analysis. phase composition, crystallinity, texture and residual stress.
- In combination with dedicated software packages most of these analysis can even be automated

www.malvernpanalytical.com

Fluorescence

Sample Fluorescence

- Incident X-ray photons excite electrons in certain elements in the sample, which results in the emission of the characteristic X-ray radiation of the respective elements.
- If this emitted radiation is close to the Cu K α , it will be detected!
- During this process the incoming photon is absorbed. This process results in a significant reduction of the penetration depth in fluorescent samples.
- This radiation will not effect peak position or intensity; it will only increase the background.

Diffracted Beam Monochromator for line detectors

Position [°2theta]

Effect of Monochromators on Fluorescent Intensity

Rules of Thumb - Monochromators

Monochromators help to reduce the range of problematic elements

Cu, incident beam mono	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As
Cu, diffracted beam mono	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As
Co, incident beam mono	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As
Co, diffracted beam mono	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As
low fluorescence													

Effect of β -filters on fluorescent Intensity

Effect of Monochromator

41 XRPD Course

© 2018 Malvern Panalytical

Rules of Thumb – X-ray Sources

- For not too complex patterns, Mo radiation is a valuable alternative
- When going from Cu to Co radiation:
 - The peak intensities drop by a factor of about 3
 - Exception Fe and Co samples: there the intensity rises by a factor of 3!
- Effect of varying penetration depth when absorption edges of elements in the sample are close to the characteristic radiation

Extra slides

Building X-Rays tube is in our blood

Grazing incidence (GI) XRD

- GI-XRD is based on the relationship between the angle of incidence (ω) and the penetration depth of the X-ray beam
- Penetration depth can be controlled
- Constant volume during one measurement
- Sensitive to compositional variations and stress gradients within bulk materials, single layers and layer sequences
- Preferred approach for the analysis of thin layers and coatings

Grazing incidence (GI) XRD – phase profiling

- Using the GI approach phase variations in phase composition can be mapped with increasing depth.
- For that full 2θ scans at different ω -angles are collected
- The example shows a CrN layer that on a Cr-CrCN layer with a transition at 1.4 $\mu m.$

Empyrean with multiCore optics

Phase composition

Solutions for automotive

Tabletop or floor-standing diffractometer?

The Aeris Benchtop XRD

Ease of use – crucial in industry

Step 1 – Place your sample

Step 2 – Choose measurement program

Step 3 – Enter sample information

Step 4 – Results

Bridging the gap to full-power lab diffractometer

NIST Al₂O₃

Bridging the gap to full-power lab diffractometer

Linearity

Conclusions

- Aeris is...
 - $\boldsymbol{\cdot}$...very intuitive in its use
 - $\boldsymbol{\cdot}$...flexible wherever in your process you need it
 - ...automatable
- Aeris has...
 - ...a low cost of ownership
 - Lifetime tube
 - Limited infrastructural needs
 - No chiller
 - No gases
 - Small footprint

$\boldsymbol{\cdot}$... a performance comparable to a full size XRD

- Speed / intensity
- Resolution
- Linearity

XRD in the mining process

XRD in metal production

The new Empyrean The intelligent diffractometer

- New MultiCore Optics
 - Fully automated X-ray optics
 - Swap between many applications
 - Increase sample throughput
 - Optimize resolution and intensity automatically
- · Improved ease of use
 - Component recognition
 - Predefined programs
 - Smart PreFIX concept

The Empyrean Series III – MultiCore Optics iCore and dCore

Incident (iCore) & Diffracted (dCore) beam modules

- perform the largest variety of X-ray diffraction measurements automatically, with excellent data quality
- Seamless combination of different experiment types in one batch
- maximize utilization of the system

MultiCore Optics iCore and dCore

Phase ID and Quantification

X-ray Reflectometry

Residual Stress

2D XRD

Transmission XRD

Pole figures

Small-angle X-ray scattering

Grazing Incidence XRD

MultiCore Optics iCore and dCore

Phase ID and Quantification

MultiCore Optics iCore and dCore

X-Ray Reflectometry

MultiCore Optics

Residual Stress

MultiCore Optics

2D XRD

MultiCore Optics iCore and dCore

Transmision XRD

MultiCore Optics

Pole figures

MultiCore Optics

Small-angle X-ray scattering

XRD for metals and hard metals

- Traditionally XRD analysis for this type of materials evolves around the following applications:
- Phase analysis identifying and quantifying the various metallic phases and differentiating their different • modifications
- Line profile analysis determining crystallite size and micro-strain inside the allowing information about crystallization during processes and presence of defects inside the crystal structures
 - Grazing incidence XRD determining depth dependent variations (phase composition/residual stress)
 - quantifying the amount and regime (compressive, tensile, shear) of residual stress
 - quantifying preferential orientation of crystallites induced by processes to estimate anisotropy
- Micro-diffraction •
- Non-ambient analysis

• Texture analysis

• Potential other applications:

Residual stress analysis

- determining lateral variations in phase composition, stress and texture
- determining behavior and phase transitions under non-ambient conditions
- **Computed tomography** and **reflectometry**

•

•

www.malvernpanalytical.com