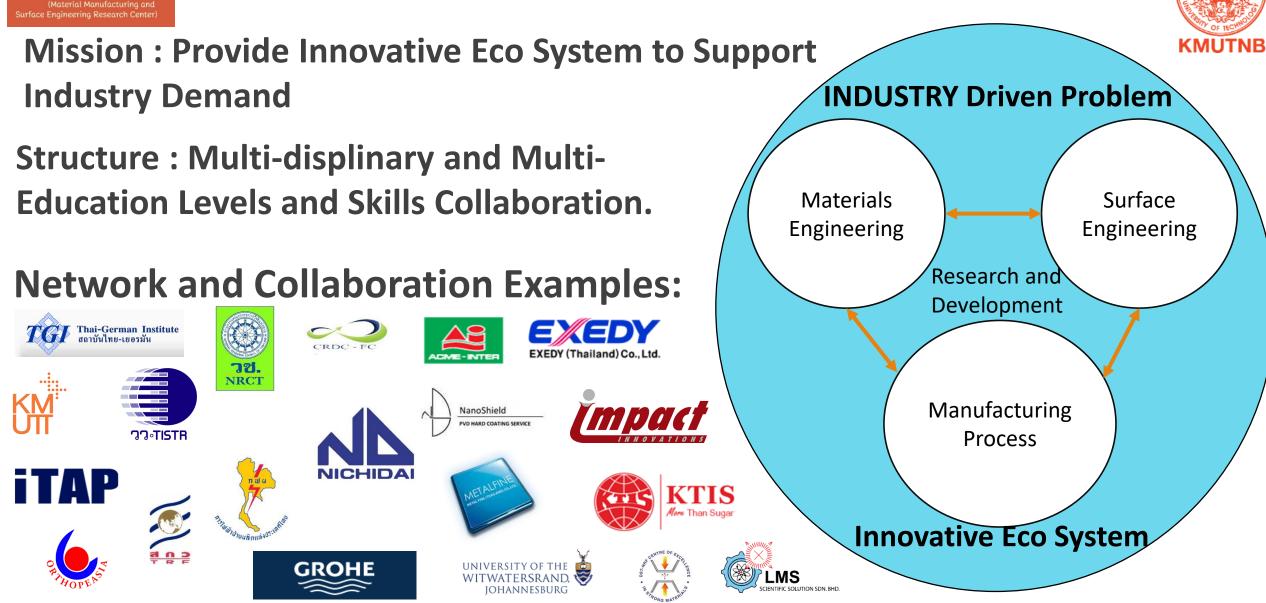


King Mongkut's University of Technology North Bangkok

Industrial Oriented Research at Material Manufacturing and Surface Engineering Research Center, MaSE

OUTLINE


- About Material Manufacturing and Surface Engineering Research Center (MaSE)
- Research
- Facilities

About MaSE

Researcher

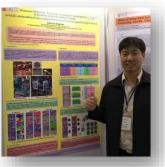
Dr. Karuna Tuchinda - Director of CRDC-FC

- Lecturer and Researcher

Mechanical Engineering Simulation and Design (MESD) Department of Mechanical and Process Engineering (MEPE) The Sirindhorn International Thai-German Graduate School of Engineering (TGGS)

King Mongkut's University of Technology North Bangkok

Asst. Prof. Dr. Yingyot Aueulan


Lecturer and Researcher
 Materials and Production Engineering (MPE)
 Department of Mechanical and Process Engineering (MEPE)
 The Sirindhorn International Thai-German Graduate School of
 Engineering (TGGS)
 King Mongkut's University of Technology North Bangkok

Network Consultant

Dr. Siriporn Larpkiattaworn

Director of Expert Centre of Innovative Materials (InnoMat) Thailand Institute of Scientific and Technological Research (TISTR)

Dr. Kittichai Sojiphan

Committee of Materials Research Society of Thailand (MRS-Thailand)
Head of Center for Welding and Materials Joining Research Network (CWMJ) of the Welding Institute of Thailand
Lecturer and Researcher Department of Welding Engineering Technology College of Industrial Technology King Mongkut's University of Technology North Bangkok

Dr. Sithipong Mahathanabodee

- Head of Graduate school
- Lecturer and Researcher
- Production Engineering Department
- Engineering Faculty

King Mongkut's University of Technology North Bangkok

PhD. Candidates

Maitri Kamonrattanapisud

Kessaraporn Wathanyu

People and MaSE

Kaweewat Worasaen

Mahathep Sukpat

KMUTNB

Nuwan Wannaprawat

Network Researchers

Nattarat Kengkla Researcher Department of Tool and Materials Engineering Faculty of Engineering King Mongkut's University of Technology Thonburi

Tharanon Usana-ampaipong Technical support Acme International (Thailand) Ltd.

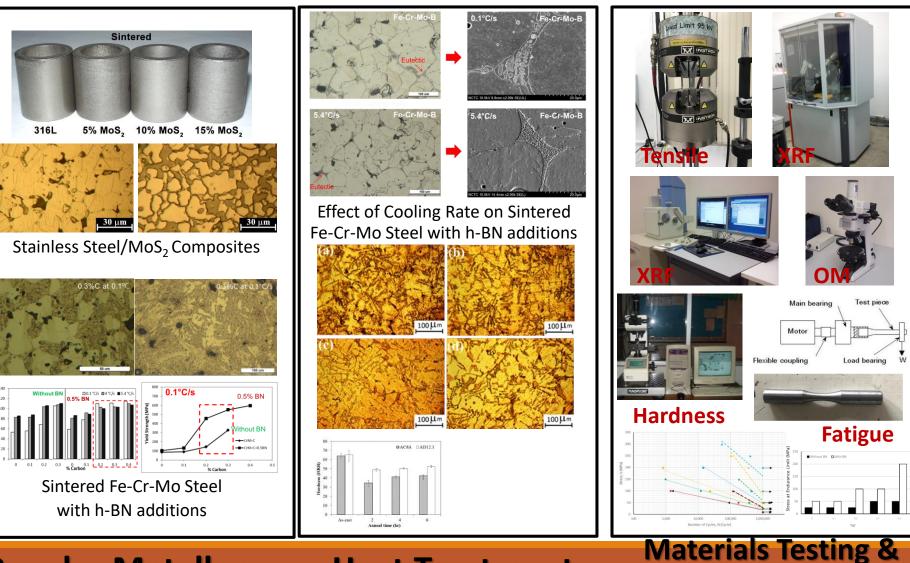
Research

Materials Technology Research

by Dr. Sithipong Mahathanabodee

- Head of Graduate school
- Lecturer and Researcher
- Production Engineering Department
- Engineering Faculty

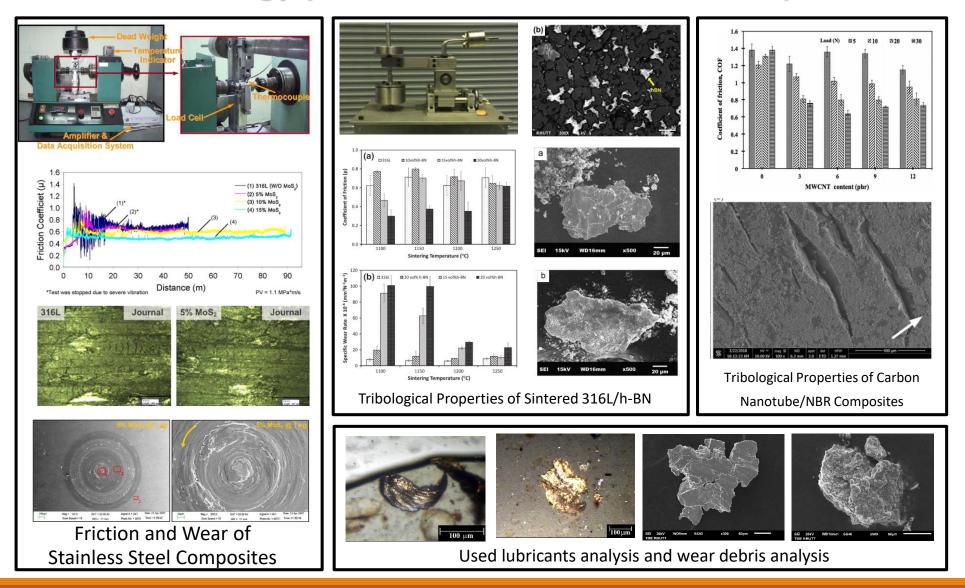
King Mongkut's University of Technology North Bangkok


Materials Technology Research

by Dr. Sithipong Mahathanabodee

Production Engineering Department Engineering Faculty KMUTNB

Powder Metallurgy


Heat Treatment

9

Characterization

Tribology (Friction, Wear and Lubrication)

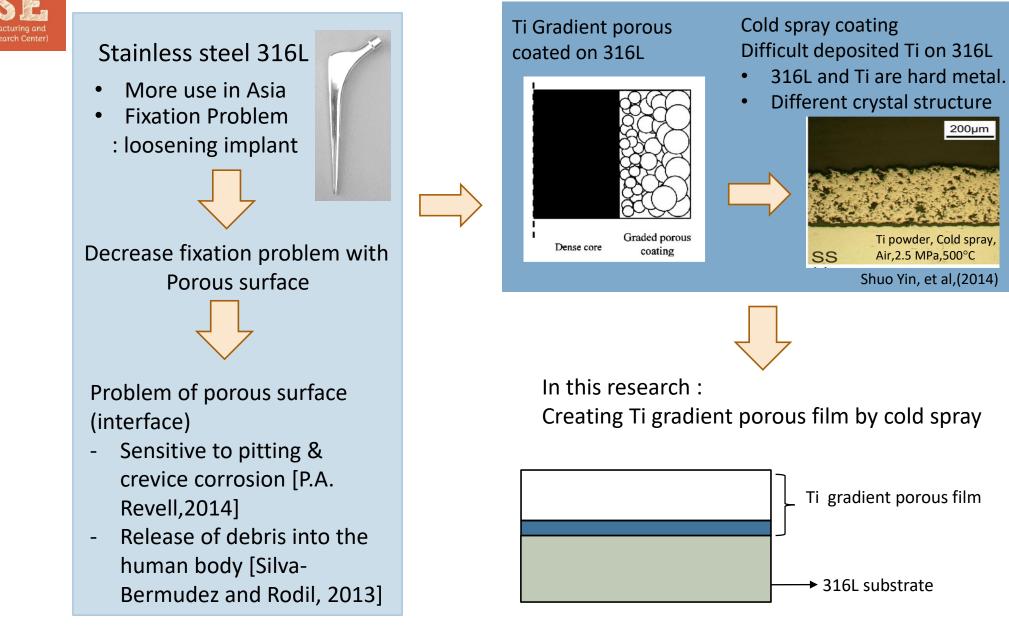
Medical Application

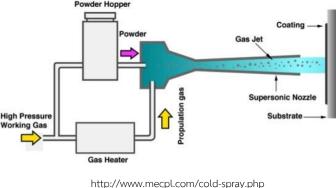
Gradient porous coating of Ti on Stainless Steel Biomaterial

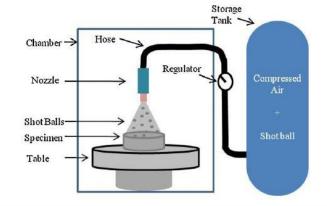
By Kessaraporn Wathanyu

PhD student in Mechanical Engineering Program Minor Mechanical Engineering Simulation and Design The Siridhorn International Thai-German Graduate School of Engineering King Mongkut's University of Technology North Bangkok

P โครงการพัฒนานักวิจัยและงานวิจัยเพื่ออุตสาหกรรม-พวอ. Research and Researchers for Industries (RRI)


NanoShield





Manufacturing Application

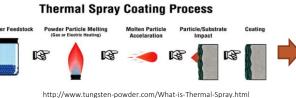
Improvement of Tool Steel Surface Property by Mechanical Based Process

[Kyun Taek Cho et al, 2012]

By Pudsadee Chupong

PhD student in Mechanical Engineering Program Minor Mechanical Engineering Simulation and Design The SiridhornInternational Thai-German Graduate School of Engineering King Mongkut's University of Technology North Bangkok

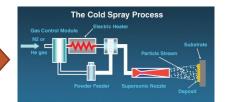
) โครงการพัฒนานักวิจัยและงานวิจัยเพื่ออุตสาหกรรม-พวอ. Research and Researchers for Industries (RRI)



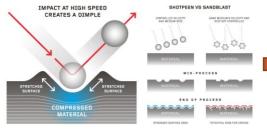
Background

Manufacturing is a major industry in Thailand. Thai industries have attempted to improve and develop their technology, production, machine, mold and die for forming part such as automotive parts and electronic parts, which is one of the most important industry.

http://www.maxsteelthai.com/index.php?option=com_content&view=article&id=122:-tool-steels&catid=42



- Available in Thailand
- Use high temperature
- More oxidation
- More porous
- Not available in Thailand
- Use low temperature
- Low oxidation
- Coating were dense


We had shot peening machine and want to study the possibility of modification of shot peening based process using cold spray process technology.

process from local SMEs company

https://vrcmetalsystems.com/technology-cold-spray/

http://spank-ind.com/shotpeen-upgrade.php

- Available in Thailand
- No coating layer
- Create residual stress
- Improve fatigue life

Improvement of Copper Alloy Performance by Cryogenic Treatment

By Nuwan Wannaprawat

PhD student in Mechanical Engineering Program Minor Mechanical Engineering Simulation and Design The SiridhornInternational Thai-German Graduate School of Engineering King Mongkut's University of Technology North Bangkok

โครงการพัฒนานักวิจัยและงานวิจัยเพื่ออุตสาหกรรม-พวอ. Research and Researchers for Industries (RRI)

Motivation

Improve Materials properties of Copper Beryllium Alloy

Objective of research

Improve the service life of Copper Beryllium Alloy by using Cryogenic Treatment Process To study relationship of Cryogenic Treatment Process. It has effect to transformation of Microstructure and Materials properties.

Assumption

Cryogenic treatment Process lead to produce fine precipitates and modify microstructure to improve materials properties

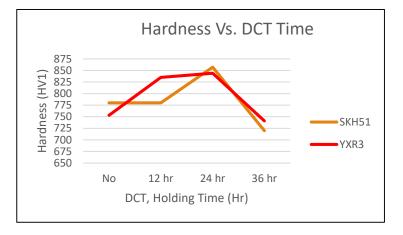
Expectation

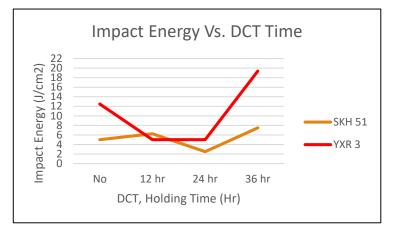
Cryogenic treatment process can improve Copper Beryllium Alloy performance The knowledge of research can apply to other Materials and Processes

Influence of Cryogenic Treatment on Life of Tool Materials

By Kaweewat Worasaen

PhD student in Mechanical Engineering Program Minor Mechanical Engineering Simulation and Design The SiridhornInternational Thai-German Graduate School of Engineering King Mongkut's University of Technology North Bangkok





- To develop the fracture toughness predicted modelling based on microstructural parameters by controlling thermal treatment process.
- To investigate the optimum deep-cryogenic treatment parameters.
- To improve the mechanical properties of Tool steels.

Hardness Results Vs. Deep cryogenic soaking time (DCT)

Impact energy Vs. Deep cryogenic soaking time (DCT)

Current Findings

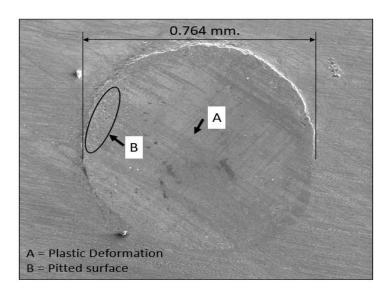
• Retained austenite transformed to martensite.

Hardness increase, Toughness decrease

Carbon atom in martensite are forced to diffuse by shrinkage in the structure and make a new carbide nucleus (secondary carbide).
 Hardness decrease, Toughness increase (36 hr soaking time).

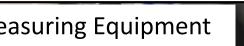
Power Generation Application

Fatigue Property Evaluation for Power Generation Application Material

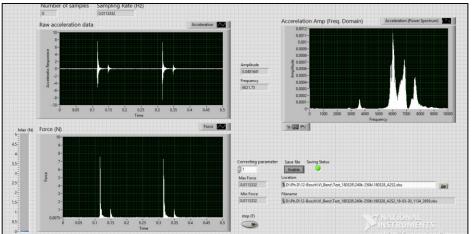

By Mahathep Sukpat PhD student in Mechanical Engineering Program Minor Mechanical Engineering Simulation and Design The SiridhornInternational Thai-German Graduate School of Engineering King Mongkut's University of Technology North Bangkok

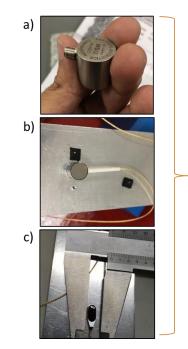
Objective:

- To investigate the local fatigue properties at the surface of the specimen



Wear surface

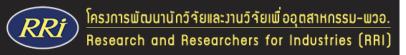



Develop Real-time force and response measurement

procedure

Develop Local Failure Detection Methodology by AE Sensor

Automotive Application


Computational study of friction materials: Application to clutch

By Maitri Kamonrattanapisud

PhD student in Mechanical Engineering Program Minor Mechanical Engineering Simulation and Design The SiridhornInternational Thai-German Graduate School of Engineering King Mongkut's University of Technology North Bangkok

Objective : Develop computational based methodology to predict mechanical and tribological performance of materials

Modelling of manufacturing process

U, U2 +5.519e-04 -1.678e+00 -3.357e+00 -5.035e+00

-6.714e+00 -8.393e+00 -1.007e+01 -1.175e+01 -1.343e+01 -1.511e+01 -1.679e+01 -1.846e+01 -2.014e+01

Modelling of testing process

Design and Predict Performance under tribology test

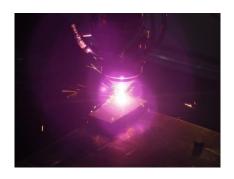
Agricultural part application

Abrasive wear !!

Need high hardness surface

High replacement cost

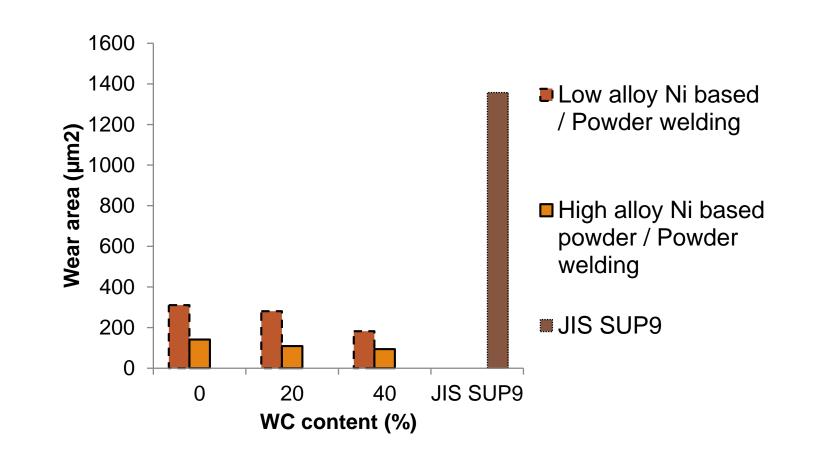
Solution: Apply hard wear resistance coating with spray based process



Flame spray & fuse

Plasma transferred arc

Laser cladding



Wear rate (Lab scale)

- At least 3.5 x lifetime increase after coating.
- Higher WC, lower wear rate.
- Higher alloy, lower wear rate.
- 14.6 x lifetime increase high alloy Ni based + 40% WC

KMUTNB

Facilities

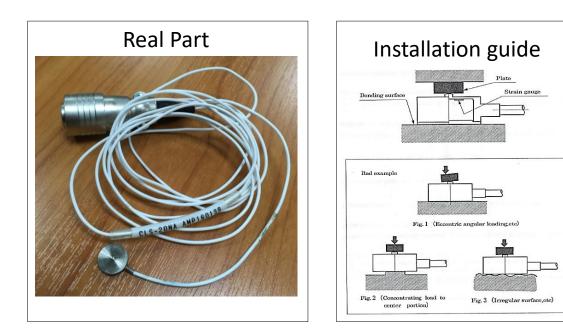
X-ray residual stress analyzer "µ-X360"

- 1. X-ray tube Cr and V (for non ferrous)
- 2. Measurement residual stress, FWHM, retain austenite

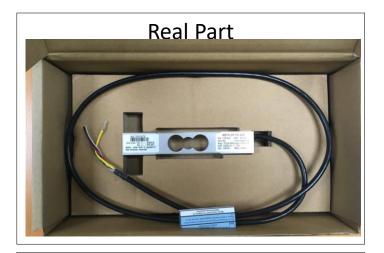
Polishing machine

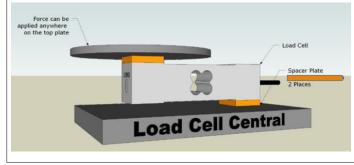
Diamond cutting machine

Fiber injection molding machine


Heat treatment furnace

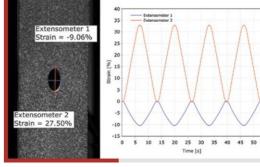
P-07 ZU HUD AIRTS 41-SS HUD SIGN


Cryogenic treatment , Chovachot, Min. Temperature -140 °C Max. during time 4 hours


Force Sensor (Strain gauge base) Small loading range: 0-20 N

Force Sensor (Strain gauge base) Medium load range : 0-100 N

ARAMIS


ARAMIS Features

- Non-contact
- Material independent
- Geometry independent
- 2D and 3D measurement
- Mobile and flexible
- Full-field
- High accuracy
- High temperature
- High speed
- Easy specimen preparation
- Integration in testing environments
- Smallest to largest object sizes
- Smallest to largest deformations

3D Surface - Displacements - Strains in Material and Component Testing

Strain

140

120

100

80

60

40

20 0.0

0.1 0.2 0.3 0.4 0.5 0.6 Strain (log.)

> 0.0 0.1 Minor Strain (log)

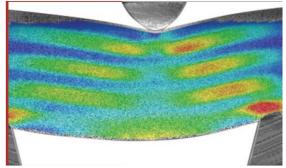
0.2 0.3

-0.1

[%]

- High temperature tests
- High speed tests
- Very small specimen sizes

Today, ARAMIS is an established and proven measuring solution in hundreds of material research facilities around the world for:


- Strain-Stress evaluation
- R-Values
- Poisson ratio
- Young's modulus
- Forming limit curves
- Residual stress
- Shear modulus

Real-Time 3D measuring

ARAMIS provides real-time results for multiple measurement positions on a specimen's surface. These are directly transferred to testing devices, data acquisition units or processing softwares (e.g. LabView, DIAdem, MSExcel, etc.) and are used for

- Controlling of testing devices
- Long-term tests with smallest storage requirements
- Vibration analysis
- 3D Video Extensometer

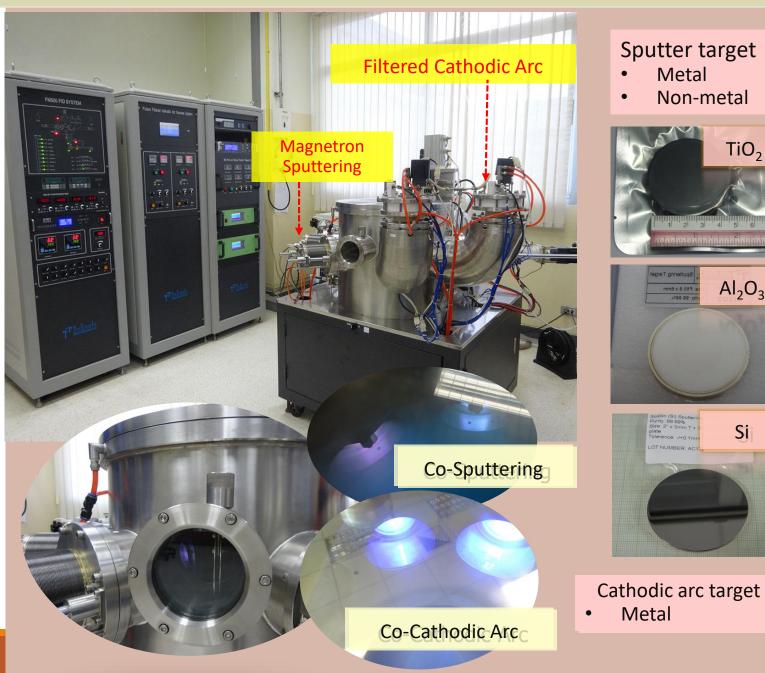
Network Facilities

Thin Film System and Characterization

Dr. Siriporn Larpkiattaworn

Director

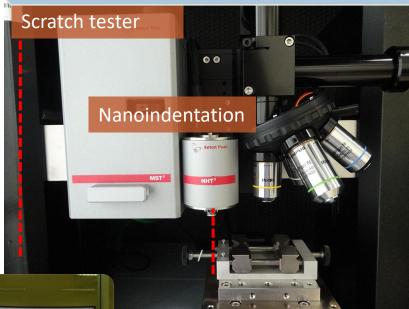
Expert Centre of Innovative Materials (InnoMat) Thailand Institute of Scientific and Technological Research (TISTR)

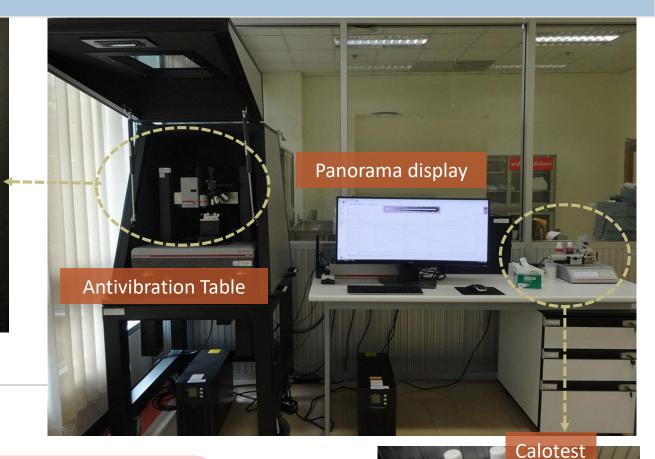


Plasma Implantation and Deposition System

TiO₂

 Al_2O_3


Si



- 2 Pulse filtered cathodic vacuum arc sources
- 2 Magnetron sputtering - DC sputtering
 - RF sputtering
- 1 RF CCP plasma source for surface cleaning and assisting ion implantation/deposition
- 1 High voltage pulse modulator **HVPM for Plasma Immersion Ion** Implantation
- 1 DC/Pulse bias power supply for thin film deposition
- 1 High voltage substrate holder
- 2 Low voltage substrate stage

Mechanical Test

(11)

Micro scratch tester (MST3)

- Scratch testing Load range : 0.01 to 30 N Depth range 0- 1000 μm Spherical indenter with calibration certificate Rockwell C diamond

Nanoindentation (NHT3)

Hardness

- Elastic modulus Load range : 0-500 mN Depth range : 0-200 μm Berkovich diamond indenter

Compact Calotest

- Thickness of films sample diameter : up to 32 mm Bi-directional motor : 300 - 3000 rpm range Stainless Steel balls ø : 10, 15,

20, 25.4, 30 mm

<section-header>

X-ray diffractometer (XRD)

XRD : Rigaku SmartLab

- Bragg Bentano (BB) : powder sample
- Parallel Beam (PB) Method : Grazing incident, residual stress
- High Resolution X-Ray Diffraction (HRXRD) of Epitaxial Thin Films : can measure Structural Information and defect
- X-ray reflectivity (XRR) : can measure thickness, Surface and Interface Roughness, density or composition of the topmost layer

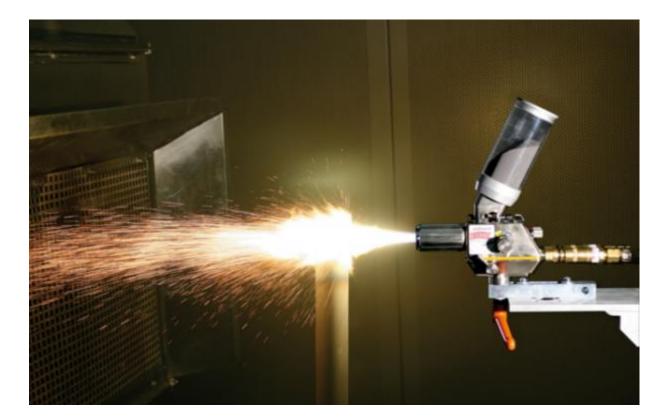
Chemical and Microstructure

XRF : Bruker S8 TIGER

- Solid and liquid samples can be analyzed
- Little or no sample preparation required
- Analysis is non-destructive (for the sample)
- Quantitative and qualitative analyses are possible
- Accuracy and long term stability
- Linearity from ppm to 100%

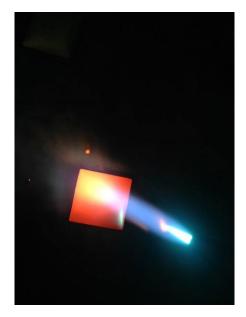
X-ray fluorescence (XRF)

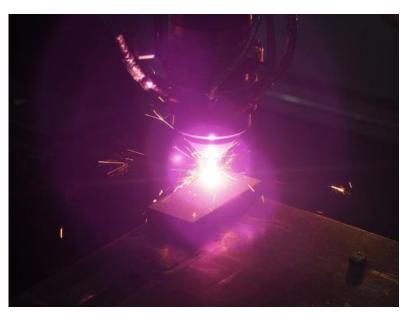
Field emission scanning electron microscope (FE-SEM)


FE-SEM : JEOL-JEM 6340J

- Surface morphology and crosssection of thin films can be analyzed
- Thin layer of films can be measured
- The finest Structural morphology can be observed up to 100,000x

Spray System at Industrial Partner Site





Thermal spray

Flame spray & fuse

Plasma transferred arc

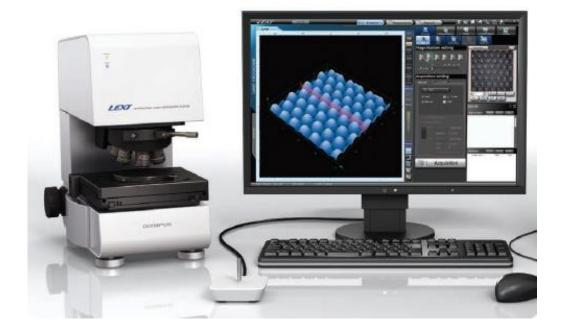
Laser cladding

Tribology Tester at Industrial Partner Site

Surface roughness test Taylor Hobson ultra V4.6.8

Anton Paar, Tribometer Software version 6.0 x 6.1.x

1. Rotating measurement


- Single way
- Reciprocating (angel
- 2. Linear measurement
- 3. Rotating Liquid Module & Rotating Heating Liquid Module (Liquid temperature ≤ 150°C)

Surface roughness tester (Non contact type)

Olympus (LEXT OLS4100), Laser scanning

Scanning electron microscope(SEM), JEOL model JSM-6610 LV Energy dispersive X-ray spectroscopy(EDS),Oxford model INCA350

High temperature Tribometer, CSM Instrument

