

1. Course code and course title

Faculty/College: TGGS

Course 090245235

Testing and Condition Diagnostic of High Voltage Equipment

King Mongkut's University of Technology North Bangkok

The Sirindhorn International Thai-German Graduate School of Engineering

Electrical and Computer Engineering Program

Section 1: General Information

	090245235	Testing and	Condition I	Diagnostic (of High Vol	tage Equipi	ment
2.	Total credits						
	3 credits	0 (2-2-5)	□ (3-0-6)	0 (3	-0-9)	O (2-3-7)	
3.	Curriculum and co	urse category	:				
	Curriculum:	Master of En	gineering in	Electrical ar	nd Compute	r Engineerin	ng
	Course categor	y: Requ	ired Course	3			
		O Co	re Course			☐ Specific C	ore Course
		O Ind	ustrial Interi	nship		O Master T	hesis
		Electi	ve Courses				
		O Ge	neral Electiv	e O Spe	cific Elective	0 (Other Elective
4.	Course coordinato	r/ Instructors					
	Course Coording	nator: Asso	c. Prof. Dr	ng. Thanap	ong Suwana	asri	
	Instructor(s):	Asso	c. Prof. Dr	ng. Thanap	ong Suwana	asri	
5.	Semester/ year of s	tudy					
	☑ Semester 1 ((Aug. to Dec.)	O Seme	ster 2 (Jan. t	to May)	Academic Y	'ear: 2021
6.	Pre-requisite (if any	/)					
	☑ No	O Ye	s, please pr	ovide:			
7.	Co-requisites (if an	y)					
	☑ No	O Ye	s, please pr	ovide:			
8.	Venue of study						
	Lecture Day/Tir	me: Thur	sdays at 09.	00-12.00			
	☐ On-site:	Lecture Roor	n No 504 F	Floor:5.			
		O TGGS, KN	//UTNB	O Faculty o	f Engineerin	g, CU	O RWTH
	On-line*:	Teaching Me	dia: [Microsoft 7	Teams	O Google I	Meet
			(O Zoom		O Webex	

Faculty/College: TGGS

0	Other	s	pecify	Ì		
---	-------	---	--------	---	--	--

Remark: * During COVID-19, the teaching can be on-site and/or on-line according to TGGS Policy.

9. Information for quality assurance in education

This course shows evidence of:

- Development of implementation from previous practices, e.g. the improvement of class teaching, course content, content classification and methods used for learning assessment
- O Involvement from professional bodies/ external agencies in instruction; thus Enhancing student academic and professional experiences
- O Integration of research or creative activities with instruction; use of research-based learning management; knowledge management practices for learning improvement
- O Integration of academic services and course implementation
- O Combination of cultural heritage preservation efforts into instruction or student activities

10. Date of latest revision:

Nov 2021

Faculty/College: TGGS

Section 2: Course Description and Implementation

1. Course Description (As written in the Official Approved Curriculum)

Generation of High AC, DC and Impulse voltage, High voltage measurement techniques, Basic of electric field and voltage distribution in insulation, insulation of high voltage equipment, partial discharge, sensor and measurement system, travelling wave theory and condition assessment of underground cable system, power transformer and condition assessment and on-line monitoring of power transformer.

2. Number of hours per semester

Lecture		Practice		Self-study		
45 hours/ semester		0 hours		105 hours/ semester		
(3 hours/week*)	(0	hours/week*	')	(7 hours/week*)		
Remark: * Based on 15 weeks of lectu	ure		'			
Course Category:	☐ Lecture		O Practice	e O Laboratory		
Course Evaluation:	□ A-F		O S/U	OP		
3. Number of hours per week	for academ	ic guidance	to individua	al students		
O 1. Giving academic advice	e (minimally r	number hour	per week) du	uring the office hour		
01 02	03	0 4	0 5	O		
The student can arrar	nge the time	other than th	e office hour	via telephone or email for the		
meeting date/time.						
2. Adopting information ted	chnology-base	ed academic	advising			
☐ Email:	thana	pong.s@tgg	s.kmutnb.ac.	th		
Phone:	08162	0816297055				
	(Do no	(Do not distribute this mobile number without permission.)				
O Communication Ap	ps: Line I	Line ID:				
	(Pleas	(Please notify the lecturer when adding the line.)				
Meeting Online:	Micro	Microsoft Team				
O Other (specify)						
O 3						

4. Course Learning Outcomes (CLOs): Students should be able to:

CLO 1. Explain the theoretical concepts in the followings:

- Generation of High AC, DC and Impulse voltage,
- High voltage measurement techniques,
- Basic of electric field and voltage distribution in insulation,

Faculty/College: TGGS

- Insulation of high voltage equipment,
- Partial discharge measurement, sensor and measurement system,
- Travelling wave theory,
- Condition assessment of underground cable system,
- Power transformer and condition assessment and on-line monitoring of power transformers
- CLO 2. Create electric field simulation models using FEMM software (freeware)
- CLO 3. Apply the electric field simulation models to analyze and understand electric field stress and voltage distribution of different high voltage equipment.
- CLO 4. Apply the electric field simulation models to simulate and implement in the design of high voltage equipment.
- CLO 5. Compare the pros and cons of off-line and on-line partial discharge measurement with various high voltage equipment.
- Remark: 1. Guidelines according to Bloom's Taxonomy is available at https://courses.dcs.wisc.edu/design-teaching/PlanDesign Fall2016/2-Online-Course-Design/2 Learning-Objectives-Design/2 Learning-Obje
 - 2. For the master level course, CLOs should be "apply" and "analyze" or possibly to consider the doctoral CLOs "evaluate" and "create". "Remember" and "Understand" are for the undergraduate level courses, however, they can be implemented only at the beginning of the course.
 - 3. CLOs can be defined as many as appropriated for the course.

5. The mapping between Expected Learning Outcomes (ELOs) from the curriculum and Course Learning Outcomes (CLOs)

Table 5.1 ELOs-CLOs Consistency (for a subject-specific course/ a specific curriculum)

ELOs/CLOs consistency	CLO 1	CLO 2	CLO 3	CLO 4	CLO 5
ELO1					
ELO2					
ELO3					
ELO4					
ELO5					
ELO6					
ELO7					
ELO8					
ELO9					
ELO10					

Faculty/College: TGGS

Remark: All ELOs and ELOs for the course (highlighted row) are as written in the Official Approved Curriculum.

Table 5.2 Mapping desirable characteristics of KMUTNB graduates and CLOs (for non-specific courses designed for various curriculums)

Consistency between desirable	CLO 1	CLO 2	CLO 3	CLO 4	CLO 5
characteristics of					
KMUTNB Graduates- CLOs					
Professional credentials with					
critical thinking skills					
2. Integrity and social					
responsibility					
3. Innovative and technopreneur					
mindset					
4. Global Competence					

Faculty/College: TGGS

Section 3: Student Improvement in relation to Course Learning Outcomes (CLOs)

Organizing learning to develop skills/ knowledge; evaluation of CLOs in accordance with the ones identified in Section 2.4

Course Learning	Teaching Methods	Evaluation Methods
Outcomes (CLOs)	compliant with CLOs	compliant with CLOs
CLO 1	Lecture*	Assignment evaluation
	In-class exercises	• Exam***
	Individual and/or group assignment	
	Additional reading assignments	
	from research and/or literature	
	journals	
CLO 2	Lecture	Assignment evaluation
	In-class exercises	• Exam
	Individual and/or group assignment	
	Group discussions	
CLO 3	Lecture	Assignment evaluation
	In-class exercises	• Exam
	Individual and/or group assignment	
	Group discussions	
CLO 4	Lecture	Assignment evaluation
	In-class exercises	• Exam
	Individual and/or group assignment	
	Group discussions	
CLO 5	Lecture	Assignment evaluation
	In-class exercises	• Exam
	Individual and/or group assignment	
	Group discussions	

Remark: * Lecture on the concept of the topic is introduced with basic or fundamental definitions, visualization and correlations. For the complicated equation, the derivation from the basic laws can be shown to students. So, the students do not memorize the equations but understand the basic concept and basic equation. The lecturer will introduce the advanced and new concepts, technologies, and findings to students from publications such as journals and websites and from the research and industrial experiences.

^{**} Active learning by asking questions related to the topic in the lecture and encouraging the students to response to the questions. If the students cannot response with answers, then the lecturer will give some guidance until the students can response.

^{***} Quiz in the closed-book format on the basic concepts and equations with simple problem solving to evaluate their learning. The solution will be given to students after grading, so they can identify their mistakes and weakness.

OBE 3 - KMUTNB

Program: ECE Degree Level: Master Faculty/College: TGGS

**** Exam on the basic concepts and equations with simple problem solving in the closed-book format as a review, whereas the complicated/integrated problem solving will be worked in the open-book format.

Faculty/College: TGGS

Section 4: Lesson Plan and Evaluation

1. Lesson Plan

Wee k	Topics/Details	CLOs	Hours	Learning and teaching activities; teaching media (if any)	Lecturer
1	Chapter 1 Generation of High voltage 1. Introduction 2. Generation of AC high voltage	1,5	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong
2	Chapter 1 Generation of High voltage 1. Generation of DC high voltage 2. Generation of impulse voltage	1,2,3,4	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong
3	Chapter 2 High voltage Measurement 1. Measurement of AC and DC high voltage	1	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong
4	Chapter 2 High voltage Measurement 1. Measurement of impulse voltage	1,2,3,4,	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong
5	Chapter 3 Electric Field Calculation 1. Principle of electric field 2. Electric field in symmetrical shape	1,2,3,4	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong
6	Chapter 3 Electric Field Calculation 1. Finite element method 2. Simulation in FEMM software	1,2,3,4, 5	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong
7	Chapter 4 High voltage Insulation 1. Gas, liquid and solid insulation	1,2,3,4	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong
8	Midterm Exam		3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong

Faculty/College: TGGS

		1	1	1	_
9	Chapter 5 Partial discharge and its detection 1. PD classification 2. Severity	1,2,3,4,	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong
10	Chapter 5 Partial discharge and its detection 1. Sensors and measurement system	1,2,3,4	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong
11	Chapter 6 Travelling wave and underground cable system 1. Travelling wave theory 2. Underground cable system and its components	1,2,3,4	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong
12	Chapter 6 Travelling wave and underground cable system 1. Condition assessment of underground cable system	1,2,3,4,	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong
13	Chapter 7 Condition Assessment of Power Transformer 1. Principle and components 2. Technical specification	1,2,3,4	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong
14	Chapter 7 Condition Assessment of Power Transformer 1. Electrical testing 2. Insulating oil testing 3. Visual inspection	1,2,3,4	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong
15	Chapter 7 Condition Assessment of Power Transformer 1. On-line monitoring system 2. Condition assessment procedure	1,2,3,4,	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong
16	Final Exam		3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong

Program: ECE Faculty/College: TGGS
Degree Level: Master

2. Evaluation Plan (in accordance with OBE 2 mapping framework)

Course Learning	Evaluation Methods	Week of Evaluation	Percentage of
Outcomes			Evaluation
(CLOs)			
CLO 2, 3, 4	Exercises and	Upon assignment	30
	assignments	(normally weekly)	
CLO 1, 2, 3, 4, 5	Midterm written exam	8	30
	and workshop		
CLO 1, 2, 3, 4, 5	Final written exam and	16	40
	workshop		

Section 5 Teaching/Learning Resources

Textbooks and materials

- Thanapong Suwanasri, High Voltage Engineering, 1st Edition, Textbook Publishing Center King Mongkut's University of Technology North Bangkok, Oct 2013, ISBN 978-616-7701-57-8
- 2. M. Horning, J. Kelly, S. Myers, R. Stebbins, "Transformer Maintenance Guide", Third Edition, S.D. Myers, Inc., ISBN 0-939320-02-9
- 3. IEEE Guide for Evaluation and Reconditioning of Liquid Immersed Power Transformer, IEEE Std. C57.140, 2017.
- 4. Partial Discharge Measurement Technique, IEC 60270.
- 5. William A. Thue, Electrical Power Cable Engineering, Marcel Dekker Inc., 1999, ISBN 0-8247-9976-3.

Faculty/College: TGGS

Section 6 Course Evaluation and Improvement

1. Course evaluation by students

The students will have an opportunity to evaluate the effectiveness of the course in a form of paper survey and group interview at the end of each semester. The results of survey and interview including the grading will be reviewed by the curriculum meeting to evaluate the course's effectiveness.

2. Strategies for assessing learning management

The students will have an opportunity to evaluate the teaching of the course in a form of paper survey and group interview at the end of each semester. The results of survey and interview including the grading will be reviewed by the curriculum meeting to evaluate the teaching as well as returning to the lecturer for further improvement.

3. Improvement schemes of course implementation

The evaluation from the students including the grading will be submitted to the curriculum meeting for reviewing and brainstorming to improve teaching of each course. Comments and suggestions given by the curriculum meeting will be informed to the responsible lecturer of each course.

4. Verification of students' learning outcomes, referred to OBE 2 and 3

The grading of this course will be evaluated and reviewed by the curriculum meeting and the TGGS board meeting in order to verify its appropriateness before the final approval.

5. Course review and improvement plans

The results of the grading evaluation and student evaluation will be submitted to the curriculum meeting for reviewing and brainstorming to improve the effectiveness of the offered courses. Comments and suggestions will be informed to the responsible lecturer of each course.