Program: ECE Degree Level: Master

Faculty/College: TGGS

Course 090245348

Optimization

King Mongkut's University of Technology North Bangkok The Sirindhorn International Thai-German Graduate School of Engineering Electrical and Computer Engineering Program

Section 1: General Information

1.	Course code and co	ourse title							
	090245348	Optimization							
2.	Total credits								
	3 credits	□ (2-2-5)	Ø (3-0-6)	□ (3-0-9)	□ (2-3-7)				
3.	Curriculum and cou	irse category:							
	Curriculum:	Master of Engi	r of Engineering in Electrical and Computer Engineering						
	Course category	y: Require	Required Courses						
		Course	category:	Required Courses	6				
			Course		□ Specific Core	e Course			
		🗖 Indu	strial Internshi	р	□ Master Thes	is			
		Elective	e Courses						
		☑ Ger	eral Elective	□ Specific Electiv	re □ Othe	er Elective			
4.	Course coordinator	/ Instructors							
	Course Coordin	ator:							
	Instructor(s):	Dr.rer.	nat. Ekkapot C	Charoenwanit					
5.	Semester/ year of s	tudy							
	□ Semester 1 (Aug. to Dec.)	☑ Semester	2 (Jan. to May)	Academic Year	: 2021			
6.	Pre-requisite (if any	')							
	⊠ No	□ Yes	, please provid	le:					
7.	Co-requisites (if any								
	⊠ No	□ Yes	, please provid	le:					
8.	Venue of study								
	Lecture Day/Tin		lays at 13.00-						
	□ On-site:	Lecture Room	No.:	Floor:					
		TGGS, KMU	JTNB D F	aculty of Engineeri	ng, CU	□ RWTH			
	☑ Online*:	Teaching Medi	a: 🗹 N	licrosoft Teams	Google Mee	et			
				oom	□ Webex				

Program: ECE Degree Level: Master

Faculty/College: TGGS

□ Other (specify)

9. Information for quality assurance in education

This course shows evidence of:

- Development of implementation from previous practices, e.g. the improvement of class teaching, course content, content classification and methods used for learning assessment
- □ Involvement from professional bodies/ external agencies in instruction; thus Enhancing student academic and professional experiences
- ☑ Integration of research or creative activities with instruction; use of research-based learning management; knowledge management practices for learning improvement
- □ Integration of academic services and course implementation
- □ Combination of cultural heritage preservation efforts into instruction or student activities

10. Date of latest revision:

28th July 2021

Section 2: Course Description and Implementation

1. Course Description

Mathematical Modelling. Linear programing. Graphical method. Simplex method. Duality. Integer Programming. Greedy Algorithms. Dynamic Programming. Branch and Bound Algorithms. Network Optimization. Non-linear programing. Unconstrained optimization. Gradient Descent. Newton's method. Constrained optimization. Lagrange Multipliers. KKT Optimality Conditions. Quadratic Programming. Separable Programming.

2. Number of hours per semester

Lecture	Pra	actice	Self-study	
45 hours/ semeste	er 30	hours	75 hours/ semester	
(3 hours/week*)	(2 hou	rs/week*)	(5 hours/week*)	
Remark: * Based on 15 weeks	s of lecture			
Course Category:	☑ Lecture	☑ Practice	□ Laboratory	
Course Evaluation:	☑ A-F	□ S/U	ΠP	

3. Number of hours per week for academic guidance to individual students

Program: ECE Degree Level: Master

₫ 1.	Giving acaden	nic advice (mi	nimum nur	nber of ho	urs per week	() during the off	ice hours	
	□ 1	□ 2 I	☑ 3	□ 4	□ 5	□		
	Wednesdays	at 13.00-16.0	00					
	The students	can arrange	to have offi	ce hours a	at times other	than the specif	ied office hours	
	by telephone	or email.						
☑ 2.	Adopting infor	mation techno	ology-based	d academi	c advising			
	☑ Email:	ekkapot.c@tggs.kmutnb.ac.th						
Phone :			0971179626					
			(Do not	distribute	this mobile n	umber without	permission.)	
		cation Apps:	Line ID:	e.wanit				
			(Please	notify the	lecturer befo	ore adding him/	her.)	
	□ Meeting O	nline:	The plat	form will b	e informed to	o students upor	n request.	
	□ Other (spe	ecify)						
□ 3.								

4. Course Learning Outcomes (CLOs): Students should be able to:

- CLO 1. To formulate real-world problems into corresponding mathematical problems
- CLO 2. To apply appropriate optimization techniques to solve the formulated mathematical problems
- CLO 3. To apply programming skills to solve optimization problems

Remark: 1. Guidelines according to Bloom's Taxonomy is available at <u>https://courses.dcs.wisc.edu/design-</u> teaching/PlanDesign_Fall2016/2-Online-Course-Design/2_Learning-Objectives-Alignment/6_objectives_bloomstaxonomy.html

2. For the master level course, CLOs should be "apply" and "analyze" or possibly consider the doctoral CLOs "evaluate" and "create". "Remember" and "Understand" are for the undergraduate level courses, however, they can be implemented only at the beginning of the course.

3. CLOs can be defined as many as appropriate for the course.

5. The mapping between Expected Learning Outcomes (ELOs) from the curriculum and Course Learning Outcomes (CLOs)

Table 5.1 ELOs-CLOs Consistency (for a subject-specific course/ a specific curriculum)Remark: All ELOs and ELOs for the course (highlighted row) are as written in the Official Approved Curriculum.

ELOs/CLOs consistency	CLO 1	CLO 2	CLO 3
ELO1	✓	\checkmark	

Program: ECE Degree Level: Master

ELOs/CLOs consistency	CLO 1	CLO 2	CLO 3
ELO2	~	~	~
ELO3	✓	~	✓
ELO4	✓	✓	✓
ELO5	✓	✓	✓
ELO6			
ELO7			
ELO8			
ELO9			
ELO10			

Table 5.2 Mapping desirable characteristics of KMUTNB graduates and CLOs (for non-specific

courses designed for various curriculums)

Consistency between desirable characteristics of KMUTNB Graduates- CLOs	CLO 1	CLO 2	CLO 3
1. Professional credentials with critical thinking skills	~	~	~
2. Integrity and social responsibility			
3. Innovative and technopreneur mindset	~	✓	~
4. Global Competence	\checkmark	\checkmark	\checkmark

Section 3: Student Improvement in relation to Course Learning Outcomes (\mbox{CLOs})

Organizing learning to develop skills/ knowledge; evaluation of CLOs in accordance with the ones identified in Section 2.4

Course Learning Teaching Methods		Evaluation Methods
Outcomes (CLOs)	compliant with CLOs	compliant with CLOs
CLO 1	Lectures	Assignment evaluation
	• Examples	

Program: ECE Degree Level: Master

	In-class exercisesIndividual assignments	 Assessment of assigned exercises Exams****
CLO 2	 Lectures Examples In-class exercises Individual assignments 	 Assignment evaluation Assessment of assigned exercises Exams****
CLO 3	 Lectures Examples In-class exercises Individual assignments Supervision sessions 	 Assignment evaluation Assessment of assigned exercise Exams ****

Remark: * Lecture on the concept of the topic is introduced with basic or fundamental definitions, visualization, and correlations. For the complicated equation, the derivation from the basic laws can be shown to students. So, the students do not memorize the equations but understand the basic concept and basic equation. The lecturer will introduce the advanced and new concepts, technologies, and findings to students from publications such as journals and websites and from the research and industrial experiences.

** Active learning by asking questions related to the topic in the lecture and encouraging the students to respond to the questions. If the students cannot respond with answers, then the lecturer will give some guidance until the students can respond.

*** Quiz in the closed-book format on the basic concepts and equations with simple problem solving to evaluate their learning. The solution will be given to students after grading, so they can identify their mistakes and weakness.

**** Exam on the basic concepts and equations with simple problem-solving in the closed-book format as a review, whereas the complicated/integrated problem solving will be worked in the open-book format.

Section 4: Lesson Plan and Evaluation

1. Lesson Plan

Wee	Topics/Details	CLOs	Hours	Learning and teaching	Lecturer
k				activities; teaching media	
				(if any)	
1	Linear Programming:	CLO 1	3.0	Lecture presentation slides	Ekkapot
	Introduction	CLO 2		• Q&A	
		CLO 3		• Examples	

Program: ECE Degree Level: Master

2	Linear Programming:	CLO 1	3.0	Lecture presentation slides	Ekkapot
2	Introduction to the	CLO 2	5.0	Q&A	Сккарот
	Simplex Algorithm	CLO 3		• Examples	
3	Linear Programming:	CLO 1	3.0	Lecture presentation slides	Ekkapot
	Theory of the Simplex	CLO 2		• Q&A	
	Algorithm and Simplex	CLO 3		• Examples	
	Tableau			Assignment	
4	Linear Programming:	CLO 1	3.0	Lecture presentation slides	Ekkapot
	Artificial Variables and	CLO 2		• Q&A	
	Redundancy	CLO 3		• Examples	
5	Linear Programming:	CLO 1	3.0	Lecture presentation slides	Ekkapot
5	Duality	CLO 2	5.0	Q&A	Еккарот
	Duanty	CLO 2 CLO 3			
		CLU 3		• Examples	
6	Linear Programming:	CLO 1	3.0	Lecture presentation slides	Ekkapot
	Sensitivity Analysis	CLO 2		• Q&A	
		CLO 3		• Examples	
				Assignment	
7	Integer Programming	CLO 1	3.0	Lecture presentation slides	Ekkapot
'	integer i rogramming	CLO 2	0.0	Q&A	Сккарот
		CLO 3			
		CLO 3		• Examples	
				Assignment	
8	Midterm Exam	CLO 1	3.0	Written Exam	Ekkapot
		CLO 2			
9	Discrete Optimization:	CLO 1	3.0	Lecture presentation slides	Ekkapot
	Greedy Algorithms and	CLO 2		• Q&A	
	Dynamic Programming	CLO 3		• Examples	
				Assignment	
				Ğ	

Program: ECE Degree Level: Master

10	Discrete Optimization:	CLO 1	3.0	Lecture presentation slides	Ekkapot
	Branch and Bound	CLO 2		• Q&A	
	Algorithms	CLO 3		• Examples	
				Assignment	
11	Discrete Optimization:	CLO 1	3.0		Ekkapot
		CLO 1	3.0	Lecture presentation slides	Еккарос
	Network Optimization	CLO 2		• Q&A	
		CLU 3		• Examples	
				Assignment	
12	Nonlinear	CLO 1	3.0	Lecture presentation slides	Ekkapot
	Programming:	CLO 2		• Q&A	
	Convexity and Convex	CLO 3		• Examples	
	Optimization Problems				
13	Nonlinear	CLO 1	3.0	Lecture presentation slides	Ekkapot
	Programming:	CLO 2		• Q&A	
	Unconstrained	CLO 3		• Examples	
	Optimization, The				
	Method of Gradient				
	Descent and Lagrange				
	Multipliers				
14	Nonlinear	CLO 1	3.0	Lecture presentation slides	Ekkapot
	Programming: KKT	CLO 2		• Q&A	
	Optimality Conditions	CLO 3		• Examples	
				Assignment	
15	Nonlinear	CLO 1	3.0	Lecture presentation slides	Ekkapot
	Programming:	CLO 2		• Q&A	
	Quadratic Programming	CLO 3		• Examples	
	and Separable			Assignment	
	Programming				

Program: ECE Degree Level: Master

16	Final Exam	CLO 1	3.0	Written Exam	Ekkapot
		CLO 2			
		Total	48.0		

2. Evaluation Plan (in accordance with OBE 2 mapping framework)

Course Learning Outcomes (CLOs)	Evaluation Methods	Week of Evaluation	Percentage of Evaluation
CLO 1, 2, 3	Assignments	1-16	40%
CLO 1, 2	2 Exams: Midterm 30% and Final 30%	8,16	60%

Section 5 Teaching/Learning Resources

Textbooks and materials

1. E. Charoenwanit. Efficient Algorithms (Presentation Slides)

2. Cormen, T. H., & Cormen, T. H. 2001. Introduction to algorithms. Cambridge, Mass: MIT Press.

3. Thie Paul R. et all. 2014. An Introduction to Linear Programming and Game Theory, Wiley.

4. Wayne L. Winston. 2003. Operations Research: Applications and Algorithms, Cengage Learning.

Section 6 Course Evaluation and Improvement

1. Course evaluation by students

The students will have an opportunity to evaluate the effectiveness of the course in the form of paper-based surveys and group interviews at the end of each semester. The results of the survey and the interview including the grading will be reviewed by the curriculum committee to evaluate the course's effectiveness.

2. Strategies for assessing learning management

The students will have an opportunity to evaluate the teaching in the form of paper-based surveys and group interviews at the end of each semester. The results of the survey and the interview including

Program: ECE Degree Level: Master

the grading will be reviewed by the curriculum committee to evaluate the teaching. The lecturer will be informed of the evaluation for future improvements.

3. Improvement schemes of course implementation

The evaluation from the students including the grading will be submitted to the curriculum committee for reviewing and brainstorming to improve the teaching of each course. Comments and suggestions given by the curriculum committee will be informed to the responsible lecturer of each course.

4. Verification of students' learning outcomes, referred to OBE 2 and 3

The grading of this course will be evaluated and reviewed by the Department meeting and the TGGS executive board meeting in order to verify its appropriateness before the final approval.

5. Course review and improvement plans

The results of the grading evaluation and student evaluation will be submitted to the curriculum committee for reviewing and brainstorming to improve the effectiveness of the offered courses. Comments and suggestions will be informed to the responsible lecturer of each course.