1. Course code and course title



Program: ECE
Degree Level: Master

### Course 090245332

## **Machine Vision**

King Mongkut's University of Technology North Bangkok
The Sirindhorn International Thai-German Graduate School of Engineering
Electrical and Computer Engineering Program

## **Section 1: General Information**

|    | 090245332            | Machine Visi    | on               |                   |              |                |
|----|----------------------|-----------------|------------------|-------------------|--------------|----------------|
| 2. | Total credits        |                 |                  |                   |              |                |
|    | 3 credits            | O (2-2-5)       | □ (3-0-6)        | O (3-0-9)         | 0 (2-3-7)    |                |
| 3. | Curriculum and co    | urse category   | :                |                   |              |                |
|    | Curriculum:          | Master of En    | gineering in Ele | ectrical and Comp | uter Enginee | ring           |
|    | Course catego        | ry: Requ        | ired Courses     |                   |              |                |
|    |                      | O Co            | re Course        |                   | O Specific   | c Core Course  |
|    |                      | O Ind           | ustrial Internsh | nip               | O Master     | Thesis         |
|    |                      | Electi          | ve Courses       |                   |              |                |
|    |                      | O Ge            | neral Elective   | O Specific Elec   | tive C       | Other Elective |
| 4. | Course coordinate    | or/ Instructors |                  |                   |              |                |
|    | Course Coordi        | nator:          |                  |                   |              |                |
|    | Instructor(s):       | Asst.           | Prof. DrIng. (   | Chayakorn Netram  | nai          |                |
| 5. | Semester/ year of    | study           |                  |                   |              |                |
|    | ☑ Semester 1         | (Aug. to Dec.)  | O Semeste        | r 2 (Jan. to May) | Academic     | : Year: 2021   |
| 6. | Pre-requisite (if an | y)              |                  |                   |              |                |
|    | ☑ No                 |                 | s, please prov   | ide:              |              |                |
| 7. | Co-requisites (if a  |                 |                  |                   |              |                |
|    | ☑ No                 |                 | es, please prov  | ide:              |              |                |
| 8. | Venue of study       |                 |                  |                   |              |                |
|    | Lecture Day/Ti       | me: Thur        | sdays at 09.00   | -12.00            |              |                |
|    | -                    |                 | n No.:806        | Floor:8           |              |                |
|    |                      | ☐ TGGS, KM      | UTNB O           | Faculty of Engine | ering, CU    | O RWTH         |
|    | ☑ On-line*:          |                 |                  | Aicrosoft Teams   |              |                |
|    |                      | J               |                  | Zoom              | O Webe       |                |
|    |                      |                 |                  |                   |              |                |



Faculty/College: TGGS

| $\overline{}$ | 041   | (: <b>c</b> ) |  |
|---------------|-------|---------------|--|
| $\cup$        | Other | specity       |  |

Remark: \* During COVID-19, the teaching can be on-site and/or on-line according to TGGS Policy.

#### 9. Information for quality assurance in education

This course shows evidence of:

Development of implementation from previous practices, e.g. the improvement of class teaching, course content, content classification and methods used for learning assessment

- O Involvement from professional bodies/ external agencies in instruction; thus Enhancing student academic and professional experiences
- Integration of research or creative activities with instruction; use of research-based learning management; knowledge management practices for learning improvement
- O Integration of academic services and course implementation
- O Combination of cultural heritage preservation efforts into instruction or student activities

#### 10. Date of latest revision:

July 2021

#### Section 2: Course Description and Implementation

#### 1. Course Description (As written in the Official Approved Curriculum)

Fundamental concept about machine vision technology. Common components in machine vision systems. Application of machine vision in the fields such as engineering and related industries.

#### 2. Number of hours per semester

| Lecture            | Practice | Self-study         |
|--------------------|----------|--------------------|
| 45 hours/ semester |          | 90 hours/ semester |
| (3 hours/week*)    |          | (6 hours/week*)    |

Remark: \* Based on 15 weeks of lecture

Course Category: 

Lecture O Practice O Laboratory

Course Evaluation: 

A-F O S/U O P

#### 3. Number of hours per week for academic guidance to individual students

O 1. Giving academic advice (minimally number hour per week) during the office hour

O 1 O 2 O 3 O 4 O 5 I flexible upon request



Faculty/College: TGGS

| The student can arrange the time via email for the meeting date/time  |                                                             |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------|-------------------------------------------------------------|--|--|--|--|--|--|--|--|
| The student can arrange the time via email for the meeting date/time. |                                                             |  |  |  |  |  |  |  |  |
| O 2. Adopting information technol                                     | ogy-based academic advising                                 |  |  |  |  |  |  |  |  |
| O Email:                                                              | chayakorn.n@tggs.kmutnb.ac.th                               |  |  |  |  |  |  |  |  |
| O Phone:                                                              |                                                             |  |  |  |  |  |  |  |  |
| O Communication Apps:                                                 | mmunication Apps: Line ID: 0806209879                       |  |  |  |  |  |  |  |  |
|                                                                       | (Please notify the lecturer when adding the line.)          |  |  |  |  |  |  |  |  |
| O Meeting Online:                                                     | The platform will be informed to students upon the request. |  |  |  |  |  |  |  |  |
| O Other (specify)                                                     |                                                             |  |  |  |  |  |  |  |  |
| O 3                                                                   |                                                             |  |  |  |  |  |  |  |  |

#### 4. Course Learning Outcomes (CLOs): Students should be able to:

- CLO 1. Explain the theoretical concepts in the followings:
  - Machine vision hardware components
  - Image forming and Camera model
  - Basic image processing and enhancement
  - Feature extraction
  - Multiview imaging
- CLO 2. Apply the knowledge in machine vision components, image forming and camera model, image processing, feature extraction and multiview imaging to actual engineering problems including at the industries.
- CLO 3. Analyze and employ machine vision solutions suitable to the engineering problems.

Remark: 1. Guidelines according to Bloom's Taxonomy is available at <a href="https://courses.dcs.wisc.edu/design-teaching/PlanDesign\_Fall2016/2-Online-Course-Design/2\_Learning-Objectives-Alignment/6\_objectives\_blooms-taxonomy.html">https://courses.dcs.wisc.edu/design-teaching/PlanDesign\_Fall2016/2-Online-Course-Design/2\_Learning-Objectives-Alignment/6\_objectives\_blooms-taxonomy.html</a>

2. For the master level course, CLOs should be "apply" and "analyze" or possibly to consider the doctoral CLOs "evaluate" and "create". "Remember" and "Understand" are for the undergraduate level courses, however, they can be implemented only at the beginning of the course.

3. CLOs can be defined as many as appropriated for the course.

## 5. The mapping between Expected Learning Outcomes (ELOs) from the curriculum and Course Learning Outcomes (CLOs)

Table 5.1 ELOs-CLOs Consistency (for a subject-specific course/ a specific curriculum)

| ELOs/CLOs consistency | CLO 1 | CLO 2 | CLO 3 |
|-----------------------|-------|-------|-------|
| ELO1                  | ✓     | ✓     |       |
| ELO2                  |       |       |       |



Faculty/College: TGGS

| ELO3  |          |          |
|-------|----------|----------|
| ELO4  |          |          |
| ELO5  | ✓        | ✓        |
| ELO6  |          |          |
| ELO7  | <b>✓</b> | <b>✓</b> |
| ELO8  |          |          |
| ELO9  |          |          |
| ELO10 |          |          |

Remark: All ELOs and ELOs for the course (highlighted row) are as written in the Official Approved Curriculum.

Table 5.2 Mapping desirable characteristics of KMUTNB graduates and CLOs (for non-specific courses designed for various curriculums)

| Consistency between desirable characteristics of KMUTNB Graduates- CLOs | CLO 1 | CLO 2    | CLO 3    |
|-------------------------------------------------------------------------|-------|----------|----------|
| KWOTNB Graduates- CLOS                                                  |       |          |          |
| 1. Professional credentials with                                        | ✓     | ✓        | ✓        |
| critical thinking skills                                                |       |          |          |
| 2. Integrity and social                                                 |       |          |          |
| responsibility                                                          |       |          |          |
| 3. Innovative and technopreneur                                         |       |          |          |
| mindset                                                                 |       |          |          |
| 4. Global Competence                                                    |       | <b>√</b> | <b>√</b> |



Faculty/College: TGGS

# Section 3: Student Improvement in relation to Course Learning Outcomes (CLOs)

Organizing learning to develop skills/ knowledge; evaluation of CLOs in accordance with the ones identified in Section 2.4

| Course Learning | Teaching Methods                    | Evaluation Methods                          |
|-----------------|-------------------------------------|---------------------------------------------|
| Outcomes (CLOs) | compliant with CLOs                 | compliant with CLOs                         |
| CLO 1           | Lecture*                            | Assignment evaluation                       |
|                 | Active learning**                   | Assessment of assigned                      |
|                 | In-class exercises                  | exercises                                   |
|                 | Individual and/or group assignment  | • Exam***                                   |
|                 | Additional reading assignments      |                                             |
|                 | from research and/or literature     |                                             |
|                 | journals                            |                                             |
| CLO 2           | Case studies, project-based         | Assignment evaluation                       |
|                 | learning                            | Assessment of assigned                      |
|                 | In-class exercises                  | exercises                                   |
|                 | Individual and/or group assignment  | • Exam***                                   |
|                 | Additional reading assignments      |                                             |
|                 | from research and/or literature     |                                             |
|                 | journals                            |                                             |
|                 | Group discussions                   |                                             |
| CLO 3           | Lecture on how to apply theoretical | Assignment evaluation                       |
|                 | concepts to the industrial          | Assessment of assigned                      |
|                 | applications                        | exercises                                   |
|                 | Demonstration on the use of         | Class project to analyze and                |
|                 | computer software for various       | implement machine vision solution           |
|                 | machine vision applications         | for selected tasks                          |
|                 | In-class exercises                  |                                             |
|                 | Group discussions on project        |                                             |
|                 | updates                             |                                             |
|                 | Mentoring on the problem solving    | s fundamental definitions visualization and |

Remark: \* Lecture on the concept of the topic is introduced with basic or fundamental definitions, visualization and correlations. For the complicated equation, the derivation from the basic laws can be shown to students. So, the students do not memorize the equations but understand the basic concept and basic equation. The lecturer will introduce the advanced



Faculty/College: TGGS

and new concepts, technologies, and findings to students from publications such as journals and websites and from the research and industrial experiences.

\*\* Active learning by asking questions related to the topic in the lecture and encouraging the students to response to the questions. If the students cannot response with answers, then the lecturer will give some guidance until the students can response.

\*\*\* Quiz in the closed-book format on the basic concepts and equations with simple problem solving to evaluate their learning. The solution will be given to students after grading, so they can identify their mistakes and weakness.

\*\*\*\* Exam on the basic concepts and equations with simple problem solving in the closed-book format as a review, whereas the complicated/integrated problem solving will be worked in the open-book format.

#### Section 4: Lesson Plan and Evaluation

#### 1. Lesson Plan

| Wee | Topics/Details          | CLOs  | Hours | Learning and teaching                  | Lecturer  |
|-----|-------------------------|-------|-------|----------------------------------------|-----------|
| k   |                         |       |       | activities; teaching media             |           |
|     |                         |       |       | (if any)                               |           |
| 1   | Introduction to machine | CLO 1 | 3.0   | Lecture presentation slides            | Dr.       |
|     | vision and its current  |       |       | • Q&A                                  | Chayakorn |
|     | research issues         |       |       | Examples and Case Studies              |           |
| 2   | Object and scene        | CLO 1 | 3.0   | Lecture presentation slides            | Dr.       |
|     |                         |       |       | • Q&A                                  | Chayakorn |
|     |                         |       |       | • Examples and Case Studies            |           |
| 3   | Light and image         | CLO 1 | 3.0   | Lecture presentation slides            | Dr.       |
|     | formation (1)-light and |       |       | • Q&A                                  | Chayakorn |
|     | color                   |       |       | • Examples and Case Studies            |           |
|     |                         |       |       | <ul> <li>In-class exercises</li> </ul> |           |
| 4   | Light and image         | CLO   | 3.0   | Lecture presentation slides            | Dr.       |
|     | formation (2)-image     | 1,    |       | • Q&A                                  | Chayakorn |
|     | formation               | CLO 2 |       | • Examples and Case Studies            |           |
|     |                         |       |       | <ul> <li>In-class exercises</li> </ul> |           |
|     |                         |       |       | <ul> <li>Assignment</li> </ul>         |           |
| 5   | Image processing (1)-   | CLO   | 3.0   | Lecture presentation slides            | Dr.       |
|     | image data, basic       | 1,    |       | • Q&A                                  | Chayakorn |
|     | manipulation and        | CLO 2 |       | • Examples and Case Studies            |           |
|     | operations              |       |       | • In-class exercises                   |           |
|     |                         |       |       | Assignment                             |           |

## OBE 3 - KMUTNB



Program: ECE Degree Level: Master Faculty/College: TGGS

| 6  | Image processing (2)- | CLO   | 3.0 | Lecture presentation slides            | Dr.       |
|----|-----------------------|-------|-----|----------------------------------------|-----------|
|    | feature extraction,   | 1,    |     | • Q&A                                  | Chayakorn |
|    | classification        | CLO 2 |     | Examples and Case Studies              |           |
|    |                       |       |     | <ul> <li>In-class exercises</li> </ul> |           |
|    |                       |       |     | Assignment                             |           |
| 7  | Multiview image (1)-  | CLO   | 3.0 | Lecture presentation slides            | Dr.       |
|    | geometry of multiple  | 1,    |     | • Q&A                                  | Chayakorn |
|    | views, feature        | CLO 2 |     | Examples and Case Studies              |           |
|    | correspondence        |       |     | <ul> <li>In-class exercises</li> </ul> |           |
| 8  | Multiview image (2)-  | CLO   | 3.0 | Lecture presentation slides            | Dr.       |
|    | stereo vision, 3D     | 1,    |     | • Q&A                                  | Chayakorn |
|    | reconstruction        | CLO 2 |     | • Examples and Case Studies            |           |
|    |                       |       |     | <ul> <li>In-class exercises</li> </ul> |           |
|    |                       |       |     | Assignment                             |           |
| 9  | Midterm exam          | CLO 1 | 3.0 | Written exam                           | Dr.       |
|    |                       |       |     |                                        | Chayakorn |
| 10 | Feature detection     | CLO   | 3.0 | Lecture presentation slides            | Dr.       |
|    |                       | 1,    |     | • Q&A                                  | Chayakorn |
|    |                       | CLO 2 |     | • Examples and Case Studies            |           |
|    |                       |       |     | • In-class exercises                   |           |
|    |                       |       |     | Assignment                             |           |
| 11 | Object and shape      | CLO   | 3.0 | Lecture presentation slides            | Dr.       |
|    | detection part 1      | 1,    |     | • Q&A                                  | Chayakorn |
|    |                       | CLO 2 |     | • Examples and Case Studies            |           |
|    |                       |       |     | • In-class exercises                   |           |
| 12 | Object and shape      | CLO   | 3.0 | Lecture presentation slides            | Dr.       |
|    | detection part 2      | 1,    |     | • Q&A                                  | Chayakorn |
|    |                       | CLO 2 |     | Examples and Case Studies              |           |
|    |                       |       |     | • In-class exercises                   |           |
|    |                       |       |     | Assignment                             |           |
| 13 | Real-time machine     | CLO   | 3.0 | Examples and Case Studies              | Dr.       |
|    | system design         | 2,    |     |                                        | Chayakorn |
|    |                       | CLO 3 |     |                                        |           |
| L  | 1                     | 1     | 1   | l .                                    |           |



Faculty/College: TGGS

| 14 | Live object detection | CLO   | 3.0  | Lecture presentation slides | Dr.       |
|----|-----------------------|-------|------|-----------------------------|-----------|
|    | and tracking part 1   | 2,    |      | • Q&A                       | Chayakorn |
|    |                       | CLO 3 |      | • In-class exercises        |           |
| 15 | Live object detection | CLO   | 3.0  | Lecture presentation slides | Dr.       |
|    | and tracking part 2   | 2,    |      | • Q&A                       | Chayakorn |
|    |                       | CLO 3 |      | • In-class exercises        |           |
|    |                       |       |      | Assignment                  |           |
| 16 | Calibration and real- | CLO 3 | 3.0  | Lecture presentation slides | Dr.       |
|    | world system usage    |       |      | • Q&A                       | Chayakorn |
|    | concern for machine   |       |      |                             |           |
|    | vision system         |       |      |                             |           |
| 17 | Project progress      | CLO 3 | 3.0  | Class discussion            | Dr.       |
|    | discussion            |       |      |                             | Chayakorn |
| 18 | Project presentation  | CLO 3 | 3.0  | Student presentation        | Dr.       |
|    |                       |       |      | • Q&A                       | Chayakorn |
|    |                       | Total | 54.0 |                             |           |

## 2. Evaluation Plan (in accordance with OBE 2 mapping framework)

| Course Learning Outcomes | Evaluation Methods | Week of Evaluation | Percentage of<br>Evaluation |
|--------------------------|--------------------|--------------------|-----------------------------|
| (CLOs)                   |                    |                    |                             |
| CLO 1, 2                 | Assignments        | 1-8, 9-15          | 40%                         |
| CLO 1, 2,                | Written exams      | 9                  | 30%                         |
| CLO 3                    | Project            | 18                 | 30%                         |



Faculty/College: TGGS

#### Section 5 Teaching/Learning Resources

#### Textbooks and materials

- [1] Computer and Machine Vision, Fourth Edition: Theory, Algorithms, Practicalities, Fourth Edition by E.R.Davies.
- [2] Robotics, Vision and Control: Fundamental Algorithms In MATLAB® Second, Completely Revised, Extended And Updated Edition, Edition 2, by P. Corke
- [3] www.opencv.org
- [4] www.python.org

## **Section 6 Course Evaluation and Improvement**

#### 1. Course evaluation by students

The students will have an opportunity to evaluate the effectiveness of the course in a form of paper survey and group interview at the end of each semester. The results of survey and interview including the grading will be reviewed by the curriculum meeting to evaluate the course's effectiveness.

#### 2. Strategies for assessing learning management

The students will have an opportunity to evaluate the teaching of the course in a form of paper survey and group interview at the end of each semester. The results of survey and interview including the grading will be reviewed by the curriculum meeting to evaluate the teaching as well as returning to the lecturer for further improvement.

#### 3. Improvement schemes of course implementation

The evaluation from the students including the grading will be submitted to the curriculum meeting for reviewing and brainstorming to improve teaching of each course. Comments and suggestions given by the curriculum meeting will be informed to the responsible lecturer of each course.

#### 4. Verification of students' learning outcomes, referred to OBE 2 and 3

The grading of this course will be evaluated and reviewed by the Department meeting and the TGGS executive board meeting in order to verify its appropriateness before the final approval.

#### 5. Course review and improvement plans



Faculty/College: TGGS

The results of the grading evaluation and student evaluation will be submitted to the curriculum meeting for reviewing and brainstorming to improve the effectiveness of the offered courses. Comments and suggestions will be informed to the responsible lecturer of each course.