

Program: ECE Faculty/College: TGGS
Degree Level: Master

Course 090245351

Hardware and System Software Architectures

King Mongkut's University of Technology North Bangkok
The Sirindhorn International Thai-German Graduate School of Engineering
Electrical and Computer Engineering Program

Section 1: General Information

1.	Course code and o	ourse t	itle				
	090245351	Hardw	are and S	System Softv	vare Architectures		
2.	Total credits						
	3 credits	□ (2-2	?-5)	☑ (3-0-6)	□ (3-0-9)	□ (2-3-7)	
3.	Curriculum and co	urse ca	tegory:				
	Curriculum:	Maste	r of Engin	eering in Ele	ectrical and Compu	ıter Engineering	
	Course categor	ry:	Require	d Courses			
			☐ Core	Course		☑ Specific Co	re Course
			☐ Indus	trial Internsh	nip	☐ Master The	sis
			Elective	Courses			
			☐ Gene	ral Elective	☐ Specific Elect	ive	her Elective
4.	Course coordinato	r/ Instru	uctors				
	Course Coordi	nator:					
	Instructor(s):		Rachata	a Ausavarur	gnirun		
5.	Semester/ year of s	study					
	☑ Semester 1	(Aug. to	Dec.)	☐ Semeste	r 2 (Jan. to May)	Academic Yea	ar: 2021
6.	Pre-requisite (if an	y)					
	☑ No		☐ Yes,	please prov	ide:		
7.	Co-requisites (if ar	ıy)					
	☑ No		☐ Yes,	please prov	ide:		
8.	Venue of study						
	Lecture Day/Ti	me:	Monday	at 13.00-16	3.00		
	☑ On-site:	Lecture	e Room N	lo.:11	Floor:1102.		
		☑ TG	GS, KMU	TNB 🗆	Faculty of Enginee	ring, CU	□ RWTH
	☑ On-line*:	Teachi	ing Media	ı: 🗹	Microsoft Teams	☐ Google Me	eet
					Zoom	☐ Webex	
					Other (specify)		

Faculty/College: TGGS Program: ECE Degree Level: Master

9. Information for quality assurance in education

This course shows evidence of:

- Integration of research or creative activities with instruction; use of research-based learning management; knowledge management practices for learning improvement
- Integration of academic services and course implementation

10. Date of latest revision:

July 2021

Section 2: Course Description and Implementation

1. Course Description (As written in the Official Approved Curriculum)

Translation from a high-level language to hardware operations, processor design, pipelining, out-oforder processing, branch prediction, caching, memory subsystem, concurrency, locality, virtual memory, software subsystems, system software, the design of software systems, programming paradigms, hardware-software co-optimizations.

Number of hours per semester

Lecture	ı	Practice	Self-study			
45 hours/ semester		30 hours	75 hours/ semester			
(3 hours/week*)	(2 h	ours/week*)	(5 hours/week*)			
Remark: * Based on 15 weeks of lectu	ıre					
Course Category:	☑ Lecture	□ Prac	tice			
Course Evaluation:	☑ A-F	□ S/U	□Р			
3. Number of hours per week		_				
□ 1. Giving academic advice	e (minimally nu	ımber hour per wee	ek) during the office hour			
☑ 1 □ 2	□ 3	□ 4 □ 5				
The student can arrange the time via email for the meeting date/time.						
☐ 2. Adopting information te	chnology-base	ed academic advisi	ng			
☑ Email:	rachata	.a@tggs.kmutnb.a	c.th			
☐ Phone:						
☐ Communication Ap	ps: Line ID:	:				
	(Please	notify the lecturer	when adding the line.)			
Meeting Online:	The pla	The platform will be informed to students upon the request.				
☑ Other (specify)	TGGS	Discord Server				
□ 3						

Program: ECE Faculty/College: TGGS
Degree Level: Master

Degree Level. Master

- 4. Course Learning Outcomes (CLOs): Students should be able to:
 - CLO 1. To understand a fundamental concept of computer architecture
 - CLO 2. To demonstrate proficiency with designing microarchitectural components
 - CLO 3. To design simple microprocessors
 - CLO 4. To apply architectural techniques to solve problems in real-world context and

communicate the result effectively

5. The mapping between Expected Learning Outcomes (ELOs) from the curriculum and Course Learning Outcomes (CLOs)

Table 5.1 ELOs-CLOs Consistency (for a subject-specific course/ a specific curriculum)

ELOs/CLOs consistency	CLO 1	CLO 2	CLO 3	CLO 4
ELO1				
ELO2	✓			
ELO3		✓	✓	✓
ELO4				
ELO5		✓	✓	✓
ELO6				✓
ELO7				✓
ELO8				
ELO9				
ELO10				

Remark: All ELOs and ELOs for the course (highlighted row) are as written in the Official Approved Curriculum.

Table 5.2 Mapping desirable characteristics of KMUTNB graduates and CLOs (for non-specific courses designed for various curriculums)

Consistency between desirable characteristics of KMUTNB Graduates CLOs	CLO 1	CLO 2	CLO 3	CLO 4
Professional credentials with critical thinking skills			√	✓
2. Integrity and social responsibility				
3. Innovative and technopreneur mindset				√
4. Global Competence			✓	

Faculty/College: TGGS

Section 3: Student Improvement in relation to Course Learning Outcomes (CLOs)

Organizing learning to develop skills/ knowledge; evaluation of CLOs in accordance with the ones identified in Section 2.4

Course Learning	Teaching Methods	Evaluation Methods
Outcomes (CLOs)	compliant with CLOs	compliant with CLOs
CLO 1	Lecture*	Assignment evaluation
	Individual assignment	• Exam****
CLO 2	Lecture*	Assignment evaluation
	Individual assignment	• Exam****
CLO 3	Lecture*	Assignment evaluation
	Individual assignment	• Exam****
	Case studies	
CLO 4	Lecture*	Assignment evaluation
	Individual assignment	• Exam****
	Case studies	Presentation
	Group or individual project	

Remark: * Lecture on the concept of the topic is introduced with basic or fundamental definitions, visualization and correlations. For the complicated equation, the derivation from the basic laws can be shown to students. So, the students do not memorize the equations but understand the basic concept and basic equation. The lecturer will introduce the advanced and new concepts, technologies, and findings to students from publications such as journals and websites and from the research and industrial experiences.

** Active learning by asking questions related to the topic in the lecture and encouraging the students to response to the questions. If the students cannot response with answers, then the lecturer will give some guidance until the students can response.

*** Quiz in the closed-book format on the basic concepts and equations with simple problem solving to evaluate their learning. The solution will be given to students after grading, so they can identify their mistakes and weakness.

**** Exam on the basic concepts and equations with simple problem solving in the closed-book format as a review, whereas the complicated/integrated problem solving will be worked in the open-book format.

Section 4: Lesson Plan and Evaluation

1. Lesson Plan

Faculty/College: TGGS

Week Topics/Details		CLOs	Hours	Learning and teaching activities; teaching media	Lecturer
				(if any)	
1	Introduction to	CLO 1	3.0	Lecture presentation slides	Rachata
	Computer Architecture	CLO 2		• Q&A	
		CLO 3		Assignment	
		CLO 4			
2	Assembly, ISA and	CLO 1	3.0	Lecture presentation slides	Rachata
	Single-cycle	CLO 2		• Q&A	
	Architecture	CLO 3		Assignment	
		CLO 4		7 toolgrimont	
3	Multi-cycle Architecture	CLO 1	3.0	Lecture presentation slides	Rachata
		CLO 2		• Q&A	
		CLO 3		Assignment	
		CLO 4			
4	Data Dependency,	CLO 1	3.0	Lecture presentation slides	Rachata
	Pipelining and Superscalar Processors	CLO 2		• Q&A	
	Caperodalar i roccosoro	CLO 3		Assignment	
		CLO 4			
5	Branch Prediction	CLO 1	3.0	Lecture presentation slides	Rachata
		CLO 2		• Q&A	
		CLO 3		Assignment	
		CLO 4			
6	Precise Exception and	CLO 1	3.0	Lecture presentation slides	Rachata
	Out-of-order Execution	CLO 2		• Q&A	
		CLO 3		Assignment	
		CLO 4			
7	Issues with Out-of-order Execution	CLO 1	3.0	Lecture presentation slides	Rachata
	LAGOULIOIT	CLO 2		• Q&A	
		CLO 3		Assignment	
		CLO 4			
8	Midterm Exam		3.0	Paper-based examination	
9	Memory Hierarchy, Caching and	CLO 1	3.0	Lecture presentation slides	Rachata
	Introduction to Virtual	CLO 2		• Q&A	
	Memory	CLO 3		Assignment	
		CLO 4			

Faculty/College: TGGS

Week	Topics/Details	CLOs	Hours	Learning and teaching activities; teaching media (if any)	Lecturer
10	Virtual Memory, DRAM and Memory Scheduling	CLO 1 CLO 2 CLO 3	3.0	Lecture presentation slidesQ&AAssignment	Rachata
11	Project Checkout Meeting	CLO 4 CLO 3 CLO 4	3.0	Lecture presentation slidesQ&AAssignment	Rachata
12	Emerging Memory Technology, Techniques to Tolerate Memory Latency and SIMD	CLO 1 CLO 2 CLO 3 CLO 4	3.0	Lecture presentation slidesQ&AAssignment	Rachata
13	-GPUs, Multiprocessors and Multithreading,	CLO 1 CLO 2 CLO 3 CLO 4	3.0	Lecture presentation slidesQ&AAssignment	Rachata
14	-Memory Consistency and Coherency	CLO 1 CLO 2 CLO 3 CLO 4	3.0	Lecture presentation slidesQ&A	Rachata
15	Accelerator and Modern-day Architectural Techniques	CLO 1 CLO 2 CLO 3 CLO 4	3.0	Lecture presentation slidesQ&A	
16	Final Exam	Total	3.0 48.0	Paper-based examination	

2. Evaluation Plan (in accordance with OBE 2 mapping framework)

Course Learning	Evaluation Methods	Week of Evaluation	Percentage of	
Outcomes (CLOs)			Evaluation	
CLO 1, 2, 3, 4	Assignments	4, 7, 14	40%	
CLO 1, 2, 3, 4	Exams	9, 16	20%	
CLO 3, 4	Project	16	40%	

Faculty/College: TGGS

Section 5 Teaching/Learning Resources

Textbooks and materials

[1] J. Hennessy and D. Patterson, "Computer Architecture: A Quantitative Approach," Morgan Kaufmann, 5th edition, 2011.

Section 6 Course Evaluation and Improvement

1. Course evaluation by students

The students will have an opportunity to evaluate the effectiveness of the course in a form of paper survey and group interview at the end of each semester. The results of survey and interview including the grading will be reviewed by the curriculum meeting to evaluate the course's effectiveness.

2. Strategies for assessing learning management

The students will have an opportunity to evaluate the teaching of the course in a form of paper survey and group interview at the end of each semester. The results of survey and interview including the grading will be reviewed by the curriculum meeting to evaluate the teaching as well as returning to the lecturer for further improvement.

3. Improvement schemes of course implementation

The evaluation from the students including the grading will be submitted to the curriculum meeting for reviewing and brainstorming to improve teaching of each course. Comments and suggestions given by the curriculum meeting will be informed to the responsible lecturer of each course.

4. Verification of students' learning outcomes, referred to OBE 2 and 3

The grading of this course will be evaluated and reviewed by the Department meeting and the TGGS executive board meeting in order to verify its appropriateness before the final approval.

5. Course review and improvement plans

The results of the grading evaluation and student evaluation will be submitted to the curriculum meeting for reviewing and brainstorming to improve the effectiveness of the offered courses. Comments and suggestions will be informed to the responsible lecturer of each course.

.

Faculty/College: TGGS