1. Course code and course title

Program: ECE Faculty/College: TGGS
Degree Level: Master

Course 090245336

Embedded Software

King Mongkut's University of Technology North Bangkok
The Sirindhorn International Thai-German Graduate School of Engineering
Electrical and Computer Engineering Program

Section 1: General Information

	090245336	Embedde	d Software			
2.	Total credits					
	3 credits	0 (2-2-5)	□ (3-0-6)	O (3-0-9)	0 (2-3-7))
3.	Curriculum and co	urse catego	ory:			
	Curriculum:	Master of	Engineering in l	Electrical and Com	puter Enginee	ering
	Course catego	ry: Re	quired Courses			
		0	Core Course		O Specif	ic Core Course
		0	Industrial Intern	ship	O Maste	r Thesis
		Ele	ective Courses			
		0 C	Seneral Elective	O Specific Ele	ective	O Other Elective
4.	Course coordinate	or/ Instructo	rs			
	Course Coordi	inator:				
	Instructor(s):	As	sst. Prof. DrIng	. Chayakorn Netra	mai	
5.	Semester/ year of	study		•		
	-	-	c.) 🗹 Semes	ter 2 (Jan. to May)	Academi	c Year: 2021
6.	Pre-requisite (if an			•		
	☑ No	- /	Yes, please pro	ovide:		
7.	Co-requisites (if a		71			
	☑ No	- /	Yes, please pro	ovide:		
8.	Venue of study		, p			
	Lecture Day/T	ime: Th	nursdays at 09.0	0-12.00		
	O On-site: Lecture		•	Floor:8		
				Faculty of Engine		O RWTH
	□ On-line*:			Microsoft Teams		
	- OH IIIO .	r odorning i		Zoom	O Webs	
				200111	C VVCDC	

Faculty/College: TGGS

\cap	Other	(specify)	

Remark: * During COVID-19, the teaching can be on-site and/or on-line according to TGGS Policy.

9. Information for quality assurance in education

This course shows evidence of:

Development of implementation from previous practices, e.g. the improvement of class teaching, course content, content classification and methods used for learning assessment

- O Involvement from professional bodies/ external agencies in instruction; thus Enhancing student academic and professional experiences
- Integration of research or creative activities with instruction; use of research-based learning management; knowledge management practices for learning improvement
- O Integration of academic services and course implementation
- O Combination of cultural heritage preservation efforts into instruction or student activities

10. Date of latest revision:

July 2021

Section 2: Course Description and Implementation

1. Course Description (As written in the Official Approved Curriculum)

Introduction to embedded systems and its current research issues. introduction to microcontroller. Structure and component of a microcontroller. Digital I/O. Analog I/O. Timer and counter. Interrupt. Serial and parallel communications. Peripheral device interface. PWM and close-loop control. Real-time design consideration. Microcontroller software testing and debugging.

2. Number of hours per semester

Lecture	Practice	Self-study
45 hours/ semester		90 hours/ semester
(3 hours/week*)		(6 hours/week*)

Remark: * Based on 15 weeks of lecture

Course Category:

Lecture O Practice O Laboratory

Course Evaluation:

A-F O S/U O P

3. Number of hours per week for academic guidance to individual students

O 1. Giving academic advice (minimally number hour per week) during the office hour

O 1 O 2 O 3 O 4 O 5 I flexible upon request

2

Faculty/College: TGGS

The student can arrange the	e time via email for the meeting date/time.
O 2. Adopting information technol	ogy-based academic advising
O Email:	chayakorn.n@tggs.kmutnb.ac.th
O Phone:	
O Communication Apps:	Line ID: 0806209879
	(Please notify the lecturer when adding the line.)
O Meeting Online:	The platform will be informed to students upon the request.
O Other (specify)	
O 3	

4. Course Learning Outcomes (CLOs): Students should be able to:

- CLO 1. Explain the theoretical concepts in the followings: Definition, characteristics, components and software technologies of embedded system.
- CLO 2. Apply the knowledge in embedded system components and software technologies to actual engineering problems including at the industries.
- CLO 3. Analyze and employ embedded software solutions suitable to the engineering problems.

Remark: 1. Guidelines according to Bloom's Taxonomy is available at https://courses.dcs.wisc.edu/design-teaching/PlanDesign_Fall2016/2-Online-Course-Design/2_Learning-Objectives-Alignment/6_objectives_blooms-taxonomy.html

- 2. For the master level course, CLOs should be "apply" and "analyze" or possibly to consider the doctoral CLOs "evaluate" and "create". "Remember" and "Understand" are for the undergraduate level courses, however, they can be implemented only at the beginning of the course.
 - 3. CLOs can be defined as many as appropriated for the course.

5. The mapping between Expected Learning Outcomes (ELOs) from the curriculum and Course Learning Outcomes (CLOs)

Table 5.1 ELOs-CLOs Consistency (for a subject-specific course/ a specific curriculum)

ELOs/CLOs consistency	CLO 1	CLO 2	CLO 3
ELO1			
ELO2			
ELO3			
ELO4			
ELO5			

Faculty/College: TGGS

ELO6		
ELO7		
ELO8		
ELO9		
ELO10		

Remark: All ELOs and ELOs for the course (highlighted row) are as written in the Official Approved Curriculum.

Table 5.2 Mapping desirable characteristics of KMUTNB graduates and CLOs (for non-specific courses designed for various curriculums)

Consistency between desirable characteristics of KMUTNB Graduates- CLOs	CLO 1	CLO 2	CLO 3
Professional credentials with critical thinking skills			
2. Integrity and social responsibility			
Innovative and technopreneur mindset			
4. Global Competence			

Faculty/College: TGGS

Section 3: Student Improvement in relation to Course Learning Outcomes (CLOs)

Organizing learning to develop skills/ knowledge; evaluation of CLOs in accordance with the ones identified in Section 2.4

Course Learning	Teaching Methods	Evaluation Methods
Outcomes (CLOs)	compliant with CLOs	compliant with CLOs
CLO 1	Lecture*	Assignment evaluation
	Active learning**	Assessment of assigned
	In-class exercises	exercises
	Individual and/or group assignment	• Exam***
	Additional reading assignments	
	from research and/or literature	
	journals	
CLO 2	Case studies, project-based	Assignment evaluation
	learning	Assessment of assigned
	In-class exercises	exercises
	Individual and/or group assignment	• Exam****
	Additional reading assignments	
	from research and/or literature	
	journals	
	Group discussions	
CLO 3	Lecture on how to apply theoretical	Assignment evaluation
	concepts to the industrial	Assessment of assigned
	applications	exercises
	Demonstration on the use of	Class project to analyze and
	computer software for various	implement embedded software
	embedded software applications	solution for selected tasks
	In-class exercises	
	Group discussions on project	
	updates	
	Mentoring on the problem solving	r fundamental definitions visualization and

Remark: * Lecture on the concept of the topic is introduced with basic or fundamental definitions, visualization and correlations. For the complicated equation, the derivation from the basic laws can be shown to students. So, the students do not memorize the equations but understand the basic concept and basic equation. The lecturer will introduce the advanced

Faculty/College: TGGS

and new concepts, technologies, and findings to students from publications such as journals and websites and from the research and industrial experiences.

** Active learning by asking questions related to the topic in the lecture and encouraging the students to response to the questions. If the students cannot response with answers, then the lecturer will give some guidance until the students can response.

*** Quiz in the closed-book format on the basic concepts and equations with simple problem solving to evaluate their learning. The solution will be given to students after grading, so they can identify their mistakes and weakness.

**** Exam on the basic concepts and equations with simple problem solving in the closed-book format as a review, whereas the complicated/integrated problem solving will be worked in the open-book format.

Section 4: Lesson Plan and Evaluation

1. Lesson Plan

Wee k	Topics/Details	CLOs	Hours	Learning and teaching activities; teaching media (if any)	Lecturer
1	Introduction to embedded systems and its current research issues	CLO 1	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Dr. Chayakorn
2	Introduction to microcontroller	CLO 1	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Dr. Chayakorn
3	Structure and component of a microcontroller	CLO 1	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Dr. Chayakorn
4	Digital IO	CLO 1, CLO 2	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Dr. Chayakorn
5	Analog IO	CLO 1, CLO 2	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Dr. Chayakorn
6	Timer and counter	CLO 1, CLO 2	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Dr. Chayakorn

OBE 3 - KMUTNB

Program: ECE Degree Level: Master Faculty/College: TGGS

7	Interrupt	CLO	3.0	Lecture presentation slides	Dr.
		1,		Examples & In-class exercises	Chayakorn
		CLO 2		Homework assignment	•
8	Midterm Exam	CLO	3.0	Written exam	Dr.
		1,			Chayakorn
		CLO 2			
9	Serial and parallel	CLO	3.0	Lecture presentation slides	Dr.
	communications	1,		Examples & In-class exercises Homework assignment	Chayakorn
		CLO 2		Homework assignment	
10	Peripheral device	CLO 1	3.0	Lecture presentation slides	Dr.
	interface part 1: basic			Examples & In-class exercises Homework assignment	Chayakorn
	input output devices			Tromowork addigminant	
11	Peripheral device	CLO	3.0	Lecture presentation slides	Dr.
	interface part 2: digital	1,		Examples & In-class exercises Homework assignment	Chayakorn
	output control	CLO 2		3	
12	PWM and close-loop	CLO	3.0	Lecture presentation slides	Dr.
	control	1,		Examples & In-class exercises Homework assignment	Chayakorn
		CLO 2		5	
13	Network connectivity for	CLO	3.0	Lecture presentation slides	Dr.
	embedded systems	1,		Examples & In-class exercises Homework assignment	Chayakorn
		CLO 2		0	
14	Real-time design	CLO	3.0	Lecture presentation slides	Dr.
	consideration: hardware	2,		Examples & In-class exercises Homework assignment	Chayakorn
	consideration	CLO 3		0	
15	Real-time design	CLO	3.0	Lecture presentation slides	Dr.
	consideration: efficient	2,		Examples & In-class exercises Homework assignment	Chayakorn
	software design	CLO 3			
16	Microcontroller software	CLO	3.0	Lecture presentation slides	Dr.
	debugging	2,		Examples & In-class exercises Homework assignment	Chayakorn
		CLO 3			
17	Final Exam	CLO 3	3.0	Project presentation	Dr.
					Chayakorn
		Total	51.0		

2. Evaluation Plan (in accordance with OBE 2 mapping framework)

Faculty/College: TGGS

Course Learning Outcomes (CLOs)	Evaluation Methods	Week of Evaluation	Percentage of Evaluation
CLO 1, 2	Assignments	4-7, 9-13	50%
CLO 1, 2,	Written exams	8	50%
CLO 3	Project	17	25%

Section 5 Teaching/Learning Resources

Textbooks and materials

- [1] Valvano, Embedded Microcomputer Systems: Real Time Interfaceing, 2007
- [2] Navet and Simonot-Lion, Automotive Embedded Systems Handbook, 2009
- [3] Qiu and Li, Real-Time Embedded Systems: Optimization, Synthesis, and Networking, 2011
- [4] www.arduino.cc
- [5] www.atmel.com

Section 6 Course Evaluation and Improvement

1. Course evaluation by students

The students will have an opportunity to evaluate the effectiveness of the course in a form of paper survey and group interview at the end of each semester. The results of survey and interview including the grading will be reviewed by the curriculum meeting to evaluate the course's effectiveness.

2. Strategies for assessing learning management

The students will have an opportunity to evaluate the teaching of the course in a form of paper survey and group interview at the end of each semester. The results of survey and interview including the grading will be reviewed by the curriculum meeting to evaluate the teaching as well as returning to the lecturer for further improvement.

3. Improvement schemes of course implementation

Faculty/College: TGGS

The evaluation from the students including the grading will be submitted to the curriculum meeting for reviewing and brainstorming to improve teaching of each course. Comments and suggestions given by the curriculum meeting will be informed to the responsible lecturer of each course.

4. Verification of students' learning outcomes, referred to OBE 2 and 3

The grading of this course will be evaluated and reviewed by the Department meeting and the TGGS executive board meeting in order to verify its appropriateness before the final approval.

5. Course review and improvement plans

The results of the grading evaluation and student evaluation will be submitted to the curriculum meeting for reviewing and brainstorming to improve the effectiveness of the offered courses. Comments and suggestions will be informed to the responsible lecturer of each course.