

Faculty/College: TGGS

Course 090245234

Electrical Drive System

King Mongkut's University of Technology North Bangkok
The Sirindhorn International Thai-German Graduate School of Engineering
Electrical and Computer Engineering Program

Section 1: General Information

1. Co	ourse code and c	ourse tit	tle				
	090245234	Electric	cal Drive Syst	em			
2. To	tal credits						
	3 credits	□ (2-2-	5) 🗹 (3	8-0-6)	□ (3-0-9)	□ (2-3-	7)
3. Cu	irriculum and co	urse cat	egory:				
	Curriculum:	Master	of Engineerii	ng in Ele	ctrical and Comp	uter Engin	eering
	Course catego	ry:	Required Co	urses			
			☐ Core Cour	se		☑ Spe	cific Core Course
			☐ Industrial I	Internshi	p	☐ Mas	ter Thesis
			Elective Cou	rses			
			☐ General E	lective	☐ Specific Elec	tive	☐ Other Elective
4. Co	ourse coordinato	r/Instruc	ctors				
	Course Coordi	nator:	Prof. DrIng	ı. Nisai F	uengwarodsakul		
	Instructor(s):		Prof. DrIng	ı. Nisai F	uengwarodsakul		
5. Se	mester/year of s	tudy					
	☑ Semester 1	(Aug. to I	Dec.)	emester	2 (Jan. to May)	Acadei	mic Year: 2021
6. Pre	e-requisite (if any)					
	☑ No		☐ Yes, plea	se provid	de:		
7. Co	e-requisites (if any	y)					
	☑ No		☐ Yes, plea	se provid	de:		
8. Ve	nue of study						
	Lecture Day/Ti	me:	Tuesdays at	t 09.00-12	2.00		
	☑ On-site:	Lecture	e Room No 5	04 Floo	r5		
		□ TG0	SS, KMUTNB	□ F	aculty of Engine	ering, CU	□ RWTH

Faculty/College: TGGS

☑ On-li	ne*: Teaching N	Media: ☑	Microsoft Team	ns 🗆 Goog	Jle Meet	
			Zoom	☐ Webe	ЭХ	
			Other (specify) .			
Remark: * During C	COVID-19, the teaching ca	an be on-site and/o	r on-line according to	TGGS Policy.		
9. Information	for quality assuran	ice in educatio	n			
This co	urse shows evidenc	e of:				
	Development of im	plementation f	rom previous pra	actices, e.g. the	e improvement o	of
	class teaching, cou assessment	rse content, cor	ntent classificatio	n and methods	used for learnin	ıg
	Involvement from	professional l	oodies/ external	agencies in	instruction; thu	IS
	Enhancing student	academic and p	orofessional expe	eriences		
	Integration of resea	arch or creative	activities with ins	struction; use	of research-base	d
	learning manageme	ent; knowledge	management pra	actices for learn	ning improvemer	nt
	Integration of acade	emic services a	nd course implen	nentation		
	Combination of cuactivities	ıltural heritage	preservation eff	orts into instru	uction or studer	nt

10. Date of latest revision:

July 2021

Faculty/College: TGGS

Section 2: Course Description and Implementation

1. Course Description (As written in the Official Approved Curriculum)

Introduction to electrical drive systems, fundamental theory of mechanical motion, power electronics converters for electrical drives, DC drive system and its control, synchronous drive system and its control, induction drive system and its control, switched reluctance drive system and its control.

2. Number of hours per semester

Lecture		Practice		Self-study						
45 hours/ semester		0 hours		105 hours/ semester						
(3 hours/week*)	(() hours/week	*)	(7 hours/week*)						
Remark: * Based on 15 weeks of lecture										
Course Category:	☑ Lecture		□ Practio	e □ Laboratory						
Course Evaluation:	☑A-F		□ S/U	□Р						
3. Number of hours per week f	or academ	ic guidance	to individ	ual students						
☐ 1. Giving academic advice	minimally r	number hour	per week) o	during the office hour						
□1 □2	□ 3	4	□ 5							
The student can arrang	ge the time	other than th	ne office ho	our via telephone or email for the						
meeting date/time.										
☑ 2. Adopting information tec	hnology-bas	sed academic	advising							
☑ Email:	nisai	.f@tggs.kmut	nb.ac.th							
☑ Phone:	0860	0860541515								
	(Do n	(Do not distribute this mobile number without permission.)								
☐ Communication App	s: Line	Line ID:								
	(Plea	(Please notify the lecturer when adding the line.)								
✓ Meeting Online:	Micro	Microsoft Team								
☐ Other (specify)										
□ 3.										

4. Course Learning Outcomes (CLOs): Students should be able to:

CLO 1. To explain the theoretical concepts in the followings, mechanical linear and angular motion system, fundamentals of power electronics technology for electrical drives

Faculty/College: TGGS

	systems, dynamic models of different electrical machine types, operating							
	characteristics of different electrical machine types, control techniques of different							
	electrical machine types, applications of different electrical machine types							
CLO 2.	To build dynamic models using MATLAB/Simulink							
CLO 3.	To apply the dynamic models to explain and compare operating characteristics of							
	different machine types							
CLO 4.	To apply the dynamic models to simulate and implement different control techniques							
	for electrical drives systems							
CLO 5.	To compare the pros and cons of different electrical drive systems for individual							
	applications							
Remark:	1. Guidelines according to Bloom's Taxonomy is available at https://courses.dcs.wisc.edu/design-							
	teaching/PlanDesign_Fall2016/2-Online-Course-Design/2_Learning-Objectives-							
	Alignment 6 objectives blooms-taxonomy.html							

2. For the master level course, CLOs should be "apply" and "analyze" or possibly to consider the doctoral CLOs "evaluate" and "create". "Remember" and "Understand" are for the undergraduate level courses, however, they can be implemented only at the beginning of the course.

3. CLOs can be defined as many as appropriated for the course.

5. The mapping between Expected Learning Outcomes (ELOs) from the curriculum and Course Learning Outcomes (CLOs)

Table 5.1 ELOs-CLOs Consistency (for a subject-specific course) a specific curriculum)

ELOs/CLOs consistency	CLO 1	CLO 2	CLO 3	CLO 4	CLO 5
ELO1					
ELO2	✓		✓	✓	
ELO3					
ELO4		✓	✓	✓	
ELO5					
ELO6		✓	✓	✓	
ELO7					
ELO8	✓				✓
ELO9					
ELO10					

Remark: All ELOs and ELOs for the course (highlighted row, are as written in the Official Approved Curriculum.

Faculty/College: TGGS

Table 5.2 Mapping desirable characteristics of KMUTNB graduates and CLOs (for non-specific courses designed for various curriculums)

Consistency between desirable characteristics of KMUTNB Graduates- CLOs	CLO 1	CLO 2	CLO 3	CLO 4	CLO 5
Professional credentials with critical thinking skills	✓				√
2. Integrity and social responsibility					√
3. Innovative and technopreneur mindset					✓
4. Global Competence		✓	✓	✓	

Faculty/College: TGGS

Section 3: Student Improvement in relation to Course Learning Outcomes (CLOs)

Organizing learning to develop skills/knowledge; evaluation of CLOs in accordance with the ones identified in Section 2.4

Course Learning	Teaching Methods	Evaluation Methods		
Outcomes (CLOs)	compliant with CLOs	compliant with CLOs		
CLO 1	Lecture*	Assignment evaluation		
	In-class exercises	• Exam****		
	Individual and or group assignment			
	Additional reading assignments from			
	research and or literature journals			
CLO 2	Lecture	Assignment evaluation		
	In-class exercises	• Exam		
	Individual and or group assignment			
	Group discussions			
CLO 3	Lecture	Assignment evaluation		
	In-class exercises	• Exam		
	Individual and or group assignment			
	Group discussions			
CLO 4	Lecture	Assignment evaluation		
	In-class exercises	• Exam		
	Individual and or group assignment			
	Group discussions			
CLO 5	Lecture	Assignment evaluation		
	In-class exercises	• Exam		
	Individual and or group assignment			
	Group discussions			

Remark: * Lecture on the concept of the topic is introduced with basic or fundamental definitions, visualization and correlations. For the complicated equation, the derivation from the basic laws can be shown to students. So, the students do not memorize the equations but understand the basic concept and basic equation. The lecturer will introduce the advanced and new concepts, technologies, and findings to students from publications such as journals and websites and from the research and industrial experiences.

OBE 3-KMUTNB

Program: ECE
Degree Level: Master

Faculty/College: TGGS

** Active learning by asking questions related to the topic in the lecture and encouraging the students to response to the questions. If the students cannot response with answers, then the lecturer will give some guidance until the students can response.

*** Quiz in the closed-book format on the basic concepts and equations with simple problem solving to evaluate their learning. The solution will be given to students after grading, so they can identify their mistakes and weakness.

**** Exam on the basic concepts and equations with simple problem solving in the closed-book format as a review, whereas the complicated integrated problem solving will be worked in the open-book format

Faculty/College: TGGS

Section 4: Lesson Plan and Evaluation

1. Lesson Plan

Week	Topics/Details	CLOs	Hours	Learning and teaching activities; teaching media	Lecturer
1	Chapter 1 Introduction	1,5	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
2	Chapter 2 Fundamental theory	1,2,3,4	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
3	Chapter 3 Power electronic converter for electrical drive system	1	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
4	Chapter 3 Power electronic converter for electrical drive system	1,2,3,4,5	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
5	Chapter 4 DC machine drive system	1,2,3,4	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
6	Chapter 4 DC machine drive system	1,2,3,4,5	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
7	Chapter 5 Synchronous machine drive system	1,2,3,4	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
8	Midterm Exam		3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
9	Chapter 5 Synchronous machine drive system	1,2,3,4,5	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai

Faculty/College: TGGS

Week	Topics/Details	CLOs	Hours	Learning and teaching activities; teaching media	Lecturer
10	Chapter 6 Induction machine drive system	1,2,3,4	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
11	Chapter 6 Induction machine drive system	1,2,3,4	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
12	Chapter 6 Induction machine drive system	1,2,3,4,5	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
13	Chapter 7 Switched reluctance drive system	1,2,3,4	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
14	Chapter 7 Switched reluctance drive system	1,2,3,4	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
15	Chapter 7 Switched reluctance drive system	1,2,3,4,5	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
16	Final Exam		3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai

2. Evaluation Plan (in accordance with OBE 2 mapping framework)

Course Learning	Evaluation Methods	Week of Evaluation	Percentage of
Outcomes			Evaluation
(CLOs)			
CLO 2, 3, 4	Exercises and	Upon assignment	30
	assignments	(normally weekly)	
CLO 1, 2, 3, 4, 5	Midterm written exam and workshop	8	30
CLO 1, 2, 3, 4, 5	Final written exam and workshop	16	40

Faculty/College: TGGS

Section 5 Teaching/Learning Resources

Textbooks and materials

Nisai H. Fuengwarodsakul, Electrical Drive System, 2st Edition, Textbook Publishing Center King Mongkut's University of Technology North Bangkok, Bangkok, Dec 2020

Section 6 Course Evaluation and Improvement

1. Course evaluation by students

The students will have an opportunity to evaluate the effectiveness of the course in a form of paper survey and group interview at the end of each semester. The results of survey and interview including the grading will be reviewed by the curriculum meeting to evaluate the course's effectiveness.

2. Strategies for assessing learning management

The students will have an opportunity to evaluate the teaching of the course in a form of paper survey and group interview at the end of each semester. The results of survey and interview including the grading will be reviewed by the curriculum meeting to evaluate the teaching as well as returning to the lecturer for further improvement.

3. Improvement schemes of course implementation

The evaluation from the students including the grading will be submitted to the curriculum meeting for reviewing and brainstorming to improve teaching of each course. Comments and suggestions given by the curriculum meeting will be informed to the responsible lecturer of each course.

4. Verification of students learning outcomes, referred to OBE 2 and 3

The grading of this course will be evaluated and reviewed by the curriculum meeting and the TGGS board meeting in order to verify its appropriateness before the final approval.

5. Course review and improvement plans

The results of the grading evaluation and student evaluation will be submitted to the curriculum meeting for reviewing and brainstorming to improve the effectiveness of the offered courses. Comments and suggestions will be informed to the responsible lecturer of each course.