

Course 090245223

Electrical Transients in Electrical Power Systems

King Mongkut's University of Technology North Bangkok The Sirindhorn International Thai-German Graduate School of Engineering Electrical and Computer Engineering Program

Section 1: General Information

1. Co	1. Course code and course title							
	090245223	Electr	ical Trans	sients in Ele	ectrical Power Sys	stems		
2. Tot	al credits							
	3 credits	O (2-2	2-5)	□ (3-0-6)	O (3-0-9)	O (2-3-	-7)	
3. Cu	. Curriculum and course category:							
	Curriculum:	Maste	er of Engine	eering in Ele	ectrical and Compu	ter Engin	eering	
	Course category: Required Courses							
	O Core Course			Course		O Spec	cific Core Course	
	O Industrial Inte			rial Internsh	ip	O Mast	ter Thesis	
		Elective Courses						
	General Elective O Specific Elective O Other Elective						O Other Elective	
4. Co	urse coordinate	or/ Instru	uctors					
	Course Coord	inator:	Assoc. F	ssoc. Prof. DrIng. Thanapong Suwanasri				
	Instructor(s):		Assoc. F	Prof. DrIng	. Thanapong Suwa	nasri		
5. Sei	mester/ year of	study						
	O Semester 1	(Aug. to	Dec.)	Semeste	r 2 (Jan. to May)	Acader	nic Year: <mark>2021</mark>	
6. Pre	e-requisite (if ar	ıy)						
	⊠ No		O Yes, I	please provi	de:			
7. Co	-requisites (if a	ny)						
	⊠ No		O Yes, I	please provi	de:			
8. Vei	8. Venue of study							
	Lecture Day/Time: Thursdays at 0			ys at 09.00-	09.00-12.00			
	☑ On-site: Lecture Room No 504		lo 504 Floo	Floor:5				
	O TGGS, KMUTNB		TNB OI	O Faculty of Engineering, CU O				
	Ø On-line*:	Teach	ing Media	: 🗹 I	Vicrosoft Teams	O Goo	ogle Meet	
				0 2	Zoom	O Web	bex	

O Other (specify)

Remark: * During COVID-19, the teaching can be on-site and/or on-line according to TGGS Policy.

9. Information for quality assurance in education

This course shows evidence of:

- Development of implementation from previous practices, e.g. the improvement of class teaching, course content, content classification and methods used for learning assessment
- O Involvement from professional bodies/ external agencies in instruction; thus enhancing student academic and professional experiences
- O Integration of research or creative activities with instruction; use of research-based learning management; knowledge management practices for learning improvement
- O Integration of academic services and course implementation
- O Combination of cultural heritage preservation efforts into instruction or student activities

10. Date of latest revision:

July 2021

Section 2: Course Description and Implementation

1. Course Description (As written in the Official Approved Curriculum)

Fundamental of electrical transients, Switching transients, Damping of transient oscillation, Abnormal switching transients, Transients in three-phase circuits, Transients on transmission lines, Behavior of equipment under transient conditions, lightning, Insulation coordination, Protection of systems and equipment against transient overvoltages.

2. Number of hours per semester

Lecture	Practice		Self-study				
45 hours/ semester	0 hours		105 hours/ semester				
(3 hours/week*)	(0 hours/week*)		(7 hours/week*)				
Remark: * Based on 15 weeks of lecture							
Course Category:	Lecture C	Practice	O Laboratory				
Course Evaluation:	A-F C) S/U	OP				

3. Number of hours per week for academic guidance to individual students

O 1. Giving academic advice (minimally number hour per week) during the office hour

O 1 O 2 O 3 O 4 O 5 O

The student can arrange the time other than the office hour via telephone or email for the meeting date/time.

2. Adopting information technology-based academic advising

	Email:	thanapong.s@tggs.kmutnb.ac.th
	Phone:	0816297055
		(Do not distribute this mobile number without permission.)
	O Communication Apps:	Line ID:
		(Please notify the lecturer when adding the line.)
	Meeting Online:	Microsoft Team
	O Other (specify)	
Ο3.		

4. Course Learning Outcomes (CLOs): Students should be able to:

CLO 1. Explain the theoretical concepts in the followings:

- Fundamental of electrical transients,
- Switching transients,
- Damping of transient oscillation,
- Abnormal switching transients,

- Transients in three-phase circuits,
- Transients on transmission lines,
- Behavior of equipment under transient conditions,
- lightning,
- Insulation coordination,
- Protection of systems and equipment against transient overvoltages
- CLO 2. Create electrical system simulation models using EMTP/ATP software (freeware)
- CLO 3. Apply the electrical system simulation models to analyze and understand different electrical transient phenomena due to various switching operations in electrical system.
- CLO 4. Apply the electrical system simulation models to simulate and implement the preventive measures to minimize the severity of electrical transients to high voltage equipment.
- CLO 5. Compare the pros and cons of various alternatives to minimize electrical transients.
- Remark: 1. Guidelines according to Bloom's Taxonomy is available at <u>https://courses.dcs.wisc.edu/design-</u> teaching/PlanDesign_Fall2016/2-Online-Course-Design/2_Learning-Objectives-

<u>Alignment/6_objectives_blooms-taxonomy.html</u>

For the master level course, CLOs should be "apply" and "analyze" or possibly to consider the doctoral CLOs "evaluate" and "create". "Remember" and "Understand" are for the undergraduate level courses, however, they can be implemented only at the beginning of the course.
 CLOs can be defined as many as appropriated for the course.

5. The mapping between Expected Learning Outcomes (ELOs) from the curriculum and Course Learning Outcomes (CLOs)

ELOs/CLOs consistency	CLO 1	CLO 2	CLO 3	CLO 4	CLO 5
ELO1					
ELO2					
ELO3					
ELO4		0			
ELO5					
ELO6					
ELO7					
ELO8					
ELO9					

Table 5.1 ELOs-CLOs Consistency (for a subject-specific course/ a specific curriculum)

Program: ECE Degree Level: Master

ELOs/CLOs consistency	CLO 1	CLO 2	CLO 3	CLO 4	CLO 5
ELO10					

Remark: All ELOs and ELOs for the course (highlighted row) are as written in the Official Approved Curriculum.

Table 5.2 Mapping desirable characteristics of KMUTNB graduates and CLOs (for non-specific

courses designed for various curriculums)

Consistency between desirable characteristics of KMUTNB Graduates- CLOs	CLO 1	CLO 2	CLO 3	CLO 4	CLO 5
1. Professional credentials with critical thinking skills					
2. Integrity and social responsibility					
3. Innovative and technopreneur mindset					
4. Global Competence					

Program: ECE Degree Level: Master

Section 3: Student Improvement in relation to Course Learning Outcomes (CLOs)

Organizing learning to develop skills/ knowledge; evaluation of CLOs in accordance with the ones identified in Section 2.4

Course Learning	Teaching Methods	Evaluation Methods
Outcomes (CLOs)	compliant with CLOs	compliant with CLOs
CLO 1	Lecture*	Assignment evaluation
	In-class exercises	• Exam****
	Individual and/or group assignment	
	Additional reading assignments	
	from research and/or literature	
	journals	
CLO 2	Lecture	Assignment evaluation
	In-class exercises	• Exam
	Individual and/or group assignment	
	Group discussions	
CLO 3	Lecture	Assignment evaluation
	In-class exercises	• Exam
	Individual and/or group assignment	
	Group discussions	
CLO 4	Lecture	Assignment evaluation
	In-class exercises	• Exam
	Individual and/or group assignment	
	Group discussions	
CLO 5	Lecture	Assignment evaluation
	In-class exercises	• Exam
	Individual and/or group assignment	
	Group discussions	

Remark: * Lecture on the concept of the topic is introduced with basic or fundamental definitions, visualization and correlations. For the complicated equation, the derivation from the basic laws can be shown to students. So, the students do not memorize the equations but understand the basic concept and basic equation. The lecturer will introduce the advanced and new concepts, technologies, and findings to students from publications such as journals and websites and from the research and industrial experiences.

** Active learning by asking questions related to the topic in the lecture and encouraging the students to response to the questions. If the students cannot response with answers, then the lecturer will give some guidance until the students can response.

*** Quiz in the closed-book format on the basic concepts and equations with simple problem solving to evaluate their learning. The solution will be given to students after grading, so they can identify their mistakes and weakness.

OBE 3 - KMUTNB

Program: ECE Degree Level: Master

Faculty/College: TGGS

**** Exam on the basic concepts and equations with simple problem solving in the closed-book format as a review, whereas the complicated/integrated problem solving will be worked in the open-book format.

Program: ECE Degree Level: Master

Section 4: Lesson Plan and Evaluation

1. Lesson Plan

Wee k	Topics/Details	CLOs	Hours	Learning and teaching activities; teaching media (if any)	Lecturer
1	 Chapter 1 Fundamental of Electrical Transients 1. Introduction 2. Circuit parameters 3. Mathematical statement and physical interpretation 4. Circuit characteristics and thumbprints 5. Principle of superposition 	1,5	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong
2	Chapter 2 Laplace Transform for Solving Differential Equations 1. Concept of a transform 2. The Laplace transform 3. Example of Laplace transform in circuit problems	1,2,3,4	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong
3	Chapter 3 Simple Switching Transients 1. Introduction 2. Circuit closing transient 3. Exercise	1	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong
4	 Chapter 3 Simple Switching Transients 1. The recovery transient initiated by the removal of a short circuit 2. Double-frequency transients 3. Exercise 	1,2,3,4, 5	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong
5	Chapter 4 Damping 1. The basic of RLC circuit	1,2,3,4	3.0	Lecture presentation slides Examples & In-class exercises	Thanapong

Program: ECE Degree Level: Master

Wee	Topics/Details	CLOs	Hours	Learning and teaching	Lecturer
	Topics/Details	CLUS	Hours		Lecturer
k				activities; teaching media	
				(if any)	
	2. The generalized			Homework assignment	
	damping curves 3. Exercise				
6	Chapter 4 Damping	1,2,3,4,	3.0	Lecture presentation slides	Thanapong
	1. The series RLC	5		Examples & In-class	1 3
	circuit 2. Resistance	J		exercises	
	z. Resistance switching			Homework assignment	
	3. Load switching				
	4. Other forms of				
	damping 5. Exercise				
7	Chapter 5 Abnormal	1,2,3,4	3.0	Lecture presentation slides	Thanapong
	Switching Transients			Examples & In-class	
	1. Normal and abnormal			exercises Homework assignment	
	switching			Homework adolgriment	
	transients				
	2. Current suppression				
	3. Capacitance				
	switching				
	4. Other restriking phenomena				
	5. Transformer				
	magnetizing inrush				
	current 6. exercise				
8	Chapter 6 Transients in		3.0	Lecture presentation slides	Thanapong
	Three-phase Circuits			Examples & In-class	
	1. Three phase capacitance			exercises Homework assignment	
	switching			Homework designment	
	2. Exercise				
9	Midterm Exam		3.0	Lecture presentation slides Examples & In-class	Thanapong
				exercises	
				Homework assignment	
10	Chapter 7 Travelling	1,2,3,4	3.0	Lecture presentation slides	Thanapong
	Waves and Transients on Transmission Lines			Examples & In-class exercises	
	1. Circuit with			Homework assignment	
	distributed			Ŭ	
	constants				
	 The wave equation Reflection and 				
	refraction of				
	travelling waves				

Program: ECE Degree Level: Master

Faculty/College: TGGS

Wee k	Topics/Details	CLOs	Hours	Learning and teaching activities; teaching media (if any)	Lecturer
	4. Behavior of travelling wave at the line terminations				
11	 Chapter 7 Travelling Waves and Transients on Transmission Lines 1. Lattice diagrams 2. Attenuation and distortion of travelling waves 3. Switching operations involving transmission line 4. Exercse 	1,2,3,4	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong
12	 Chapter 8 Impact of Surges on Transformer Windings Impact of surges on transformer windings Impact of surges on insulator strings Exercise 	1,2,3,4, 5	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong
13	 Chapter 9 Lightning 1. Lightning stroke current 2. Overhead ground wire protection 3. Overvoltages 4. Computation of lightning effect on voltage rise of transmission tower 5. Exercise 	1,2,3,4	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong
14	Chapter 10 Insulation coordination 1. Stress/strength 2. Concept of volt/time curve 3. Probability and risk evaluation 4. Exercise	1,2,3,4	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong
15	Chapter 11 Protection of Systems and Equipment against Transient Overvoltages	1,2,3,4, 5	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong

Program: ECE Degree Level: Master

Wee k	Topics/Details	CLOs	Hours	Learning and teaching activities; teaching media (if any)	Lecturer
	 Lightning protection by overhead ground wire Lightning arrester Exercise 				
16	Final Exam		3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Thanapong

2. Evaluation Plan (in accordance with OBE 2 mapping framework)

Course Learning Outcomes (CLOs)	Evaluation Methods	Week of Evaluation	Percentage of Evaluation
CLO 2, 3, 4	Exercises and assignments	Upon assignment (normally weekly)	20
CLO 1, 2, 3, 4, 5	Midterm written exam and workshop	8	40
CLO 1, 2, 3, 4, 5	Final written exam and workshop	16	40

Section 5 Teaching/Learning Resources

Textbooks and materials

- Thanapong Suwanasri, Lecture companion, Electrical Transients in Electrical Power Systems, 2012
- 2. Allan Greenwood, "Electrical Transient in Electrical Power System", John Wiley & Sons, Inc. Second Edition, 1991
- Lou van der Sluis, "Transients in Power Systems", John Wiley & Sons, Inc. Second Edition, 2002
- 4. Neville Watson and Jos Arrillaga, "Power System Electromagnetic Transients Simulation", The Institution of Engineering and Technology, London, United Kingdom, 2003

Section 6 Course Evaluation and Improvement

1. Course evaluation by students

The students will have an opportunity to evaluate the effectiveness of the course in a form of paper survey and group interview at the end of each semester. The results of survey and interview including the grading will be reviewed by the curriculum meeting to evaluate the course's effectiveness.

2. Strategies for assessing learning management

The students will have an opportunity to evaluate the teaching of the course in a form of paper survey and group interview at the end of each semester. The results of survey and interview including the grading will be reviewed by the curriculum meeting to evaluate the teaching as well as returning to the lecturer for further improvement.

3. Improvement schemes of course implementation

The evaluation from the students including the grading will be submitted to the curriculum meeting for reviewing and brainstorming to improve teaching of each course. Comments and suggestions given by the curriculum meeting will be informed to the responsible lecturer of each course.

4. Verification of students' learning outcomes, referred to OBE 2 and 3

The grading of this course will be evaluated and reviewed by the curriculum meeting and the TGGS board meeting in order to verify its appropriateness before the final approval.

5. Course review and improvement plans

The results of the grading evaluation and student evaluation will be submitted to the curriculum meeting for reviewing and brainstorming to improve the effectiveness of the offered courses. Comments and suggestions will be informed to the responsible lecturer of each course.