

Faculty/College: TGGS

Course 090245224

Battery Storage Systems

King Mongkut's University of Technology North Bangkok
The Sirindhorn International Thai-German Graduate School of Engineering
Electrical and Computer Engineering Program

Section 1: General Information

1.	Course code and co	urse title							
	090245224	Battery S	torage System	าร					
2.	Total credits								
	3 credits	□ (2-2-5)	☑ (3-0-6	6)	□ (3-0-9)	□ (2-3-7)	7)		
3.	Curriculum and cou	rse categ	ory:						
	Curriculum: Master of Engineering in Electrical and Computer Engineering								
	Course category: Required Courses								
			Core Course			☑ Spec	cific Core Course		
			I Industrial Inte	ernship)	□ Mas	ter Thesis		
		Е	lective Course	es					
			General Elec	tive	☐ Specific Elec	ctive	☐ Other Elective		
4 .	Course coordinator	Instructo	rs						
	Course Coording	ator: Prof. DrIng. Nisai Fuengwarodsakul							
	Instructor(s):	F	Prof. DrIng. N	isai Fu	ıengwarodsaku	I			
5 .	Semester/year of st	udy							
	☐ Semester 1 (Aug.to De	c.) 🗹 Sem	ester	2 (Jan. to May)	Acader	nic Year։ <mark>2021</mark>		
6.	Pre-requisite (if any)								
	☑ No		Yes, please	provid	e:				
7 .	Co-requisites (if any)							
	☑ No		Yes, please	provid	e:				
8.	Venue of study								
	Lecture Day/Tin	ne: T	uesdays at 09	9.00-12	.00				
	☑ On-site:	Lecture F	Room No 504	Floor	55				
		□ TGGS	, KMUTNB	□ Fa	aculty of Engine	ering, CU	□ RWTH		

Faculty/College: TGGS

☑ On-li	ne*: Teaching M	ledia: ☑	Microsoft Teams	☐ Google Meet	
			Zoom	□ Webex	
			Other (specify)		
Remark: * During (COVID-19, the teaching ca	n be on-site and/or	on-line according to TG0	GS Policy.	
9. Information	for quality assuran	ce in educatio	n		
This co	ourse shows evidence	e of:			
	Development of im	plementation fr	om previous practio	ces, e.g. the improve	ment of
	class teaching, cour assessment	se content, con	tent classification ar	nd methods used for	learning
	Involvement from	professional b	odies/ external ag	encies in instructio	n; thus
	Enhancing student	academic and p	rofessional experier	nces	
	Integration of resea	rch or creative	activities with instru	ction; use of researc	:h-based
	learning manageme	nt; knowledge r	management practio	es for learning impro	vement
	Integration of acade	mic services ar	nd course implemen	tation	
	Combination of cultactivities	Itural heritage	preservation efforts	into instruction or	student

10 Date of latest revision:

Nov 2021

Faculty/College: TGGS

Self-study

Section 2: Course Description and Implementation

1. Course Description (As written in the Official Approved Curriculum)

Fundamentals of battery, basics of electrochemistry, primary battery, secondary battery, battery management system, battery model, application of battery.

Practice

2. Number of hours per semester

Lecture

Lecture		Fractice		Sell-Study		
45 hours/ semester	() hours		105 hours/ semester		
(3 hours/week*)	(0 hc	(0 hours/week*)		(7 hours/week*)		
Remark: * Based on 15 weeks of lectur	e					
Course Category:	☑ Lecture		□ Practice	e □ Laboratory		
Course Evaluation:	☑ A-F		□ S/U	□Р		
3. Number of hours per week						
☐ 1. Giving academic advice	minimally num	nber hour p	er week) d	uring the office hour		
□1 □2	□ 3	□ 4	□ 5			
The student can arrar	ige the time oth	ner than the	office hou	ur via telephone or email for the		
meeting date/time.						
☑ 2. Adopting information ted	chnology-based	academic	advising			
☑ Email:	nisai.f@	tggs.kmutn	b.ac.th			
☑ Phone:	086054	1515				
	(Do not	distribute th	nis mobile	number without permission.)		
☐ Communication App	os: Line ID:					
	(Please	notify the le	ecturer who	en adding the line.)		
	Microso	ft Team				
☐ Other (specify)						
□ 3						
4 Course Learning Outcomes	(CLOs). Stude	ents should	he able t	to.		

4. Course Learning Outcomes (CLOs): Students should be able to:

- CLO 1. To explain the following theoretical concepts of chemical energy storage systems, generic chemical process in batteries, operating characteristics of battery storage system, Charging process, battery management system and battery safety.
- CLO 2. To analyze and compare the principles of individual battery technologies, e.g. lead acid battery, super capacitor and Li-lon battery.

Faculty/College: TGGS

- CLO 3. To analyze the factors to the life-time and operations of individual battery technologies.
 CLO 4. To analyze the functionality of battery management systems and make judgements for individual applications.
 CLO 5. To compare the pros and cons of different battery storage systems for individual applications
- Remark:
 1. Guidelines according to Bloom's Taxonomy is available at https://courses.dcs.wisc.edu/design-teaching/PlanDesign_Fall2016/2-Online-Course-Design/2_Learning-Objectives-

Alignment/6_objectives_blooms-taxonomy.html

- 2. For the master level course, CLOs should be "apply" and "analyze" or possibly to consider the doctoral CLOs "evaluate" and "create". "Remember" and "Understand" are for the undergraduate level courses, however, they can be implemented only at the beginning of the course.
 - 3. CLOs can be defined as many as appropriated for the course.
- 5. The mapping between Expected Learning Outcomes (ELOs) from the curriculum and Course Learning Outcomes (CLOs)

Table 5.1 ELOs-CLOs Consistency (for a subject-specific course) a specific curriculum)

ELOs/CLOs consistency	CLO 1	CLO 2	CLO 3	CLO 4	CLO 5
ELO1					
ELO2	✓		✓	✓	
ELO3					
ELO4		✓	✓	✓	
ELO5					
ELO6		✓	√	√	
ELO7					
ELO8	√				✓
ELO9					
ELO10					

Remark: All ELOs and ELOs for the course (highlighted row) are as written in the Official Approved Curriculum.

Table 5.2 Mapping desirable characteristics of KMUTNB graduates and CLOs (for non-specific courses designed for various curriculums)

Faculty/College: TGGS

Consistency between desirable characteristics of KMUTNB Graduates- CLOs	CLO 1	CLO 2	CLO 3	CLO 4	CLO 5
Professional credentials with critical thinking skills	✓			✓	√
2. Integrity and social responsibility					√
3. Innovative and technopreneur mindset				✓	√
4. Global Competence		✓	✓	✓	

Faculty/College: TGGS

Section 3: Student Improvement in relation to Course Learning Outcomes (CLOs)

Organizing learning to develop skills/knowledge; evaluation of CLOs in accordance with the ones identified in Section 2.4

Course Learning	Teaching Methods	Evaluation Methods		
Outcomes (CLOs)	compliant with CLOs	compliant with CLOs		
CLO 1	Lecture*	Assignment evaluation		
	In-class exercises	• Exam****		
	Individual and or group assignment			
	Additional reading assignments from			
	research and or literature journals			
CLO 2	Lecture	Assignment evaluation		
	In-class exercises	• Exam		
	Individual and or group assignment			
	Group discussions			
CLO 3	Lecture	Assignment evaluation		
	In-class exercises	• Exam		
	Individual and or group assignment			
	Group discussions			
CLO 4	Lecture	Assignment evaluation		
	In-class exercises	• Exam		
	Individual and or group assignment			
	Group discussions			
CLO 5	Lecture	Assignment evaluation		
	In-class exercises	• Exam		
	Individual and or group assignment			
	Group discussions			

Remark: * Lecture on the concept of the topic is introduced with basic or fundamental definitions, visualization and correlations. For the complicated equation, the derivation from the basic laws can be shown to students. So, the students do not memorize the equations but understand the basic concept and basic equation. The lecturer will introduce the advanced and new concepts, technologies, and findings to students from publications such as journals and websites and from the research and industrial experiences.

OBE 3-KMUTNB

Program: ECE
Degree Level: Master

Faculty/College: TGGS

** Active learning by asking questions related to the topic in the lecture and encouraging the students to response to the questions. If the students cannot response with answers, then the lecturer will give some guidance until the students can response.

*** Quiz in the closed-book format on the basic concepts and equations with simple problem solving to evaluate their learning. The solution will be given to students after grading, so they can identify their mistakes and weakness.

**** Exam on the basic concepts and equations with simple problem solving in the closed-book format as a review, whereas the complicated integrated problem solving will be worked in the open-book format

Faculty/College: TGGS

Section 4: Lesson Plan and Evaluation

1. Lesson Plan

Week	Topics/Details	CLOs	Hours	Learning and teaching activities; teaching media	Lecturer
1	Chapter 1 Introduction	1,5	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
2	Chapter 2 Fundamental for battery technology	1	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
3	Chapter 2 Fundamental for battery technology	1,2,3	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
4	Chapter 2 Fundamental for battery technology	1,2,3,5	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
5	Chapter 3 Lead acid battery	1,2,4	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
6	Chapter 3 Lead acid battery	1,2,4	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
7	Chapter 3 Lead acid battery	1,2,3,5	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
8	Midterm Exam		3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
9	Chapter 4 Li-lon battery	1,2,3	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
10	Chapter 4 Li-lon battery	1,2,3	3.0	Lecture presentation slides Examples & In-class exercises	Nisai

Faculty/College: TGGS

Week	k Topics/Details CLOs		Hours	Learning and teaching	Lecturer
				activities; teaching media	
				(if any)	
				Homework assignment	
11	Chapter 4 Li-Ion battery	1,2,3,4,5	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
12	Chapter 5 Supercapacitor	1,2,3	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
13	Chapter 5 Supercapacitor	1,2,3,4,5	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
14	Chapter 6 Charging process	2,3,5	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
15	Chapter 7 Battery Pack	2,3,4,5	3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai
16	Final Exam		3.0	Lecture presentation slides Examples & In-class exercises Homework assignment	Nisai

2. Evaluation Plan (in accordance with OBE 2 mapping framework)

Course Learning	Evaluation Methods	Week of Evaluation	Percentage of
Outcomes			Evaluation
(CLOs)			
CLO 1, 2, 3, 4	Exercises and	Upon assignment	30
	assignments	(normally weekly)	
CLO 1, 2, 3, 4, 5	Midterm written exam and workshop	8	30
CLO 1, 2, 3, 4, 5	Final written exam and workshop	16	40

Faculty/College: TGGS

Section 5 Teaching/Learning Resources

Textbooks and materials

Slides and teaching material of Battery Storage System Lecture, Prof. Dirk-Uwe Sauer, RWTH-Aachen University.

Section 6 Course Evaluation and Improvement

1. Course evaluation by students

The students will have an opportunity to evaluate the effectiveness of the course in a form of paper survey and group interview at the end of each semester. The results of survey and interview including the grading will be reviewed by the curriculum meeting to evaluate the course's effectiveness.

2. Strategies for assessing learning management

The students will have an opportunity to evaluate the teaching of the course in a form of paper survey and group interview at the end of each semester. The results of survey and interview including the grading will be reviewed by the curriculum meeting to evaluate the teaching as well as returning to the lecturer for further improvement.

3. Improvement schemes of course implementation

The evaluation from the students including the grading will be submitted to the curriculum meeting for reviewing and brainstorming to improve teaching of each course. Comments and suggestions given by the curriculum meeting will be informed to the responsible lecturer of each course.

4. Verification of students learning outcomes, referred to OBE 2 and 3

The grading of this course will be evaluated and reviewed by the curriculum meeting and the TGGS board meeting in order to verify its appropriateness before the final approval.

5. Course review and improvement plans

The results of the grading evaluation and student evaluation will be submitted to the curriculum meeting for reviewing and brainstorming to improve the effectiveness of the offered courses. Comments and suggestions will be informed to the responsible lecturer of each course.