

Program: ECE Degree Level: Master Faculty/College: TGGS

Course 090245339

Advanced Computer Architecture

King Mongkut's University of Technology North Bangkok The Sirindhorn International Thai-German Graduate School of Engineering Electrical and ComputerEngineering Program

Section 1: General Information

1.	Course code and	course title	e						
	090245339	Advance	d Computer Archit	ecture					
2.	Total credits								
	3 credits	□ (2-2-5) 🗹 (3-0-6)	□ (3-0-9)	□ (2-3-7)				
3.	Curriculum and co	ourse cate	gory:						
	Curriculum:	Master o	f Engineering in El	ectrical and Comp	uter Engineerin	g			
	Course catego	ory: R	Required Courses						
		C	Core Course		□Specific C	ore Course			
		E	Industrial Interns	nip	□ Master TI	nesis			
		E	lective Courses						
		V	I General Elective	□ Specific Elec	tive 🗆 🗘	Other Elective			
4.	Course coordinate	or/ Instruct	tors						
Course Coordinator:									
	Instructor(s):	F	Rachata Ausavarur	ngnirun					
5.	Semester/ year of	study							
	□Semester 1	(Aug. to De	ec.) 🗹 Semeste	er 2 (Jan. to May)	Academic Y	ear: <mark>2021</mark>			
6.	Pre-requisite (if an	וy)							
	□ No	6	☑ Yes, please prov	ide: Hardware an	d System Softw	are Architectures			
7.	Co-requisites (if a	ny)							
	⊠ No	E	⊐ Yes, please prov	ide:					
8.	Venue of study								
	Lecture Day/T	ime: N	Monday at 13.00-1	6.00					
	☑ On-site:	Lecture F	e Room No.:11 Floor:1102						
	☑ TG		S, KMUTNB	Faculty of Engine	ering, CU	□ RWTH			
	☑ On-line*:	Teaching	g Media: 🗹	Microsoft Teams	Google M	leet			
				Zoom	□ Webex				
				Other (specify)					

Remark: * During COVID-19, the teaching can be on-site and/or on-line according to TGGS Policy.

9. Information for quality assurance in education

This course shows evidence of:

- Integration of research or creative activities with instruction; use of research-based learning management; knowledge management practices for learning improvement
- Integration of academic services and course implementation

10. Date of latest revision:

July 2021

Section 2: Course Description and Implementation

1. Course Description (As written in the Official Approved Curriculum)

Parallel architecture, cache coherence, memory consistency, transactional memory, non-volatile memory, hardware reliability, hardware security, reconfigurable architecture, Graphics architecture, software-hardware codesigns that enable new models of computation

2. Number of hours per semester

Lecture	P	ractice		Self-study		
45 hours/ semester	3	0 hours		75 hours/ semester		
(3 hours/week*)	(2 hc	(2 hours/week*)		(5 hours/week*)		
Remark: * Based on 15 weeks of lectur	re					
Course Category:	✓ Lecture		Practi	ce 🛛 Laboratory		
Course Evaluation:	☑ A-F		□ S/U	ΠP		
3. Number of hours per week	for academic	guidanc	e to indivi	dual students		
□ 1. Giving academic advice	(minimally nur	mber hou	r per week) during the office hour		
☑ 1	□ 3	□4	□ 5	□		
The student can arrang	ge the time via	email for	the meetir	ng date/time.		
□ 2. Adopting information tee	chnology-base	d acaden	nic advising	J		
☑ Email:	rachata.	rachata.a@tggs.kmutnb.ac.th				
□ Phone:						
Communication App	os: Line ID:					
	(Please	(Please notify the lecturer when adding the line.)				
Meeting Online:	The plat	The platform will be informed to students upon the request.				
☑ Other (specify)	TGGS D	TGGS Discord Server				
□ 3						

- 4. Course Learning Outcomes (CLOs): Students should be able to:
 - CLO 1. To demonstrate ability to develop specifications, implement and design processors using rigorous techniques.
 - CLO 2. To demonstrate ability to use proper abstractions, programming paradigms and advanced architecture design concepts.
 - CLO 3. To analyze and identify and exploit opportunities to improve performance and parallelism in hardware by selecting appropriate hardware design techniques that deliver high instruction- and memory-level parallelisms.
 - CLO 4. To analyze sequential and parallel hardware designs and programs using Amdahl's law and how hardware of the future works.
 - CLO 5. To understand and explain the advanced concepts and components of ISAs and microarchitectures
 - CLO 6. To be able to write a fully-functioning simulation infrastructure and/or evaluation platform to test new hardware designs..
- 5. The mapping between Expected Learning Outcomes (ELOs) from the curriculum and Course Learning Outcomes (CLOs)

ELOs/CLOs consistency	CLO 1	CLO 2	CLO 3	CLO 4	CLO 5	CLO 6
ELO1					\checkmark	~
ELO2	\checkmark	✓	✓	\checkmark	~	✓
ELO3	\checkmark	✓	\checkmark	\checkmark	~	~
ELO4						
ELO5	\checkmark	~				
ELO6						
ELO7						
ELO8						
ELO9						
ELO10						

Table 5.1 ELOs-CLOs Consistency (for a subject-specific course/ a specific curriculum)

Remark: All ELOs and ELOs for the course (highlighted row) are as written in the Official Approved Curriculum.

 Table 5.2 Mapping desirable characteristics of KMUTNB graduates and CLOs (for non-specific courses designed for various curriculums)

Program: ECE Degree Level: Master

Faculty/College: TGGS

Consistency between desirable characteristics of KMUTNB Graduates- CLOs	CLO 1	CLO 2	CLO 3	CLO 4	CLO 5	CLO 6
1. Professional credentials with critical thinking skills			~	~		
2. Integrity and social responsibility						
3. Innovative and technopreneur mindset						
4. Global Competence			\checkmark	✓		

Section 3: Student Improvement in relation to Course Learning Outcomes (CLOs)

Organizing learning to develop skills/ knowledge; evaluation of CLOs in accordance with the ones identified in Section 2.4

Course Learning	Teaching Methods	Evaluation Methods
Outcomes (CLOs)	compliant with CLOs	compliant with CLOs
CLO 1	Lecture*	Assignment evaluation
	Individual assignment	• Exam****
CLO 2	Lecture*	Assignment evaluation
	Individual assignment	• Exam****
CLO 3	Lecture*	Assignment evaluation
	Individual assignment	• Exam****
CLO 4	Lecture*	Assignment evaluation
	Individual assignment	• Exam****
CLO 5	Lecture*	Assignment evaluation
	Individual assignment	• Exam****
CLO 6	Lecture*	Assignment evaluation
	Individual assignment	• Exam****

Remark: * Lecture on the concept of the topic is introduced with basic or fundamental definitions, visualization and correlations. For the complicated equation, the derivation from the basic laws can be shown to students. So, the students do not memorize the equations but understand the basic concept and basic equation. The lecturer will introduce the advanced and new concepts, technologies, and findings to students from publications such as journals and websites and from the research and industrial experiences.

Program: ECE Degree Level: Master

Faculty/College: TGGS

** Active learning by asking questions related to the topic in the lecture and encouraging the students to response to the questions. If the students cannot response with answers, then the lecturer will give some guidance until the students can response.

*** Quiz in the closed-book format on the basic concepts and equations with simple problem solving to evaluate their learning. The solution will be given to students after grading, so they can identify their mistakes and weakness.

**** Exam on the basic concepts and equations with simple problem solving in the closed-book format as a review, whereas the complicated/integrated problem solving will be worked in the open-book format.

Section 4: Lesson Plan and Evaluation

1. Lesson Plan

Week	Topics/Details	CLOs	Hours	Learning and teaching activities; teaching media (if any)	Lecturer
1	Lecture 1: Computer Architecture Recap	CLO 1	3.0	Lecture presentation slides	Rachata
	Architecture Recap	CLO 2		• Q&A	
		CLO 3		Assignment	
		CLO 5			
2	Lecture 2: Instruction	CLO 1	3.0	Lecture presentation slides	Rachata
	Scheduling	CLO 3		• Q&A	
		CLO 5		Assignment	
		CLO 6			
3	Lecture 3: Threading	CLO 1	3.0	Lecture presentation slides	Rachata
		CLO 3		• Q&A	
		CLO 5		Assignment	
		CLO 6			
4	Lecture 4: Systolic	CLO 1	3.0	Lecture presentation slides	Rachata
	Arrays and VLIW	CLO 2		• Q&A	
		CLO 3		Assignment	
		CLO 5			
		CLO 6			
5	Lecture 5: Modern GPU	CLO 1	3.0	Lecture presentation slides	Rachata
	designs	CLO 3		• Q&A	
		CLO 5		Assignment	
		CLO 6			
6	Lecture 6: Virtual	CLO 1	3.0	Lecture presentation slides	Rachata
	memory design	CLO 2		• Q&A	

Program: ECE Degree Level: Master

Faculty/College: TGGS

Week	Topics/Details	CLOs	Hours	Learning and teaching activities; teaching media (if any)	Lecturer
		CLO 3		Assignment	
		CLO 4			
		CLO 5			
7	Lecture 7: Advanced	CLO 1	3.0	Lecture presentation slides	Rachata
	Caching policies	CLO 2		• Q&A	
		CLO 3		Assignment	
		CLO 4			
		CLO 5			
8	Lecture 8: Persistent memory		3.0	Paper-based examination	
9	Project Checkpoint	CLO 1	3.0	Lecture presentation slides	Rachata
		CLO 3		• Q&A	
		CLO 4		•	
		CLO 5			
		CLO 6			
10	Lecture 9: Memory	CLO 1	3.0	Lecture presentation slides	Rachata
	subsystems	CLO 3		• Q&A	
		CLO 4		Assignment	
		CLO 5			
11	Lecture 10: Techniques	CLO 1	3.0	Lecture presentation slides	Rachata
	to tolerate memory	CLO 2		• Q&A	
	latency I	CLO 3		Assignment	
		CLO 4			
		CLO 5			
12	Lecture 11: Techniques	CLO 1	3.0	Lecture presentation slides	Rachata
	to tolerate memory	CLO 3		• Q&A	
	latency II	CLO 4		Assignment	
		CLO 5			
13	-Lecture 12: Reliability	CLO 1	3.0	Lecture presentation slides	Rachata
		CLO 3		• Q&A	
		CLO 4		Assignment	
		CLO 5			
14	-Lecture 13: Hardware	CLO 1	3.0	Lecture presentation slides	Rachata
	security	CLO 2		• Q&A	
		CLO 3			

Program: ECE Degree Level: Master

Faculty/College: TGGS

Week	Topics/Details	CLOs	Hours	Learning and teaching activities; teaching media (if any)	Lecturer
		CLO 4			
		CLO 5			
15	Lecture 14: Accelerator design and Processing- in-memory	CLO 1	3.0	Lecture presentation slides	Rachata
		CLO 2		• Q&A	
	in monory	CLO 3			
		CLO 4			
		CLO 5			
16	Final Exam		3.0	Paper-based examination	
		Total	48.0		

2. Evaluation Plan (in accordance with OBE 2 mapping framework)

Course Learning	Evaluation Methods	Week of Evaluation	Percentage of
Outcomes (CLOs)			Evaluation
CLO 1, 2, 3, 4, 5, 6	Assignments	4, 7, 14	40%
CLO 1, 2, 3, 4, 5, 6	Project	9, 16	40%
CLO 1, 2, 3, 4, 5, 6	Exams	9, 16	20%

Section 5 Teaching/Learning Resources

Textbooks and materials

[1] J. Hennessy and D. Patterson, "Computer Architecture: A Quantitative Approach,"Morgan Kaufmann, 5th edition, 2011.

Section 6 Course Evaluation and Improvement

1. Course evaluation by students

The students will have an opportunity to evaluate the effectiveness of the course in a form of paper survey and group interview at the end of each semester. The results of survey and interview including the grading will be reviewed by the curriculum meeting to evaluate the course's effectiveness.

2. Strategies for assessing learning management

The students will have an opportunity to evaluate the teaching of the course in a form of paper survey and group interview at the end of each semester. The results of survey and interview including

Program: ECE Degree Level: Master

Faculty/College: TGGS

the grading will be reviewed by the curriculum meeting to evaluate the teaching as well as returning to the lecturer for further improvement.

3. Improvement schemes of course implementation

The evaluation from the students including the grading will be submitted to the curriculum meeting for reviewing and brainstorming to improve teaching of each course. Comments and suggestions given by the curriculum meeting will be informed to the responsible lecturer of each course.

4. Verification of students' learning outcomes, referred to OBE 2 and 3

The grading of this course will be evaluated and reviewed by the Department meeting and the TGGS executive board meeting in order to verify its appropriateness before the final approval.

5. Course review and improvement plans

The results of the grading evaluation and student evaluation will be submitted to the curriculum meeting for reviewing and brainstorming to improve the effectiveness of the offered courses. Comments and suggestions will be informed to the responsible lecturer of each course.