

Faculty/College: TGGS

Course 090245352

Advanced Software Engineering

King Mongkut's University of Technology North Bangkok

The Sirindhorn International Thai-German Graduate School of Engineering

Electrical and Computer Engineering Program

Section 1: General Information

1.	Course code and	course title				
	090245352	Advanced S	Software Engine	ering		
2.	Total credits					
	3 credits	□ (2-2-5)	☑ (3-0-6)	□ (3-0-9)	□ (2-3-7)	
3.	Curriculum and co	ourse catego	ry:			
Curriculum: Master of Engineering in Electri				ectrical and Comp	uter Enginee	ring
	Course catego	ry: Req	uired Courses			
			ore Course		☑ Specific	Core Course
		□ Ir	ndustrial Internsh	nip	☐ Master	Thesis
		Elec	ctive Courses			
		□G	Seneral Elective	☐ Specific Elec	tive 🗆	Other Elective
4.	Course coordinate	or/ Instructor	s			
Course Coordinator:						
	Instructor(s):	Dr.	Sansiri Tanachu	ıtiwat		
5.	Semester/ year of	study				
	☑ Semester 1	(Aug. to Dec.)	er 2 (Jan. to May)	Academic	Year: 2021
6.	Pre-requisite (if ar	ıy)				
	☑ No		∕es, please prov	ide:		
7.	Co-requisites (if a	ny)				
	☑ No		∕es, please prov	ide:		
8.	Venue of study					
	•		lay at 9.00 AM -			
	☐ On-site:		om No.: 1103	Floor		
				Faculty of Enginee		
	☑ On-line*:	Teaching M		Microsoft Teams		
				Zoom	☑ WebE	
				Other (specify)		
Re	emark: * During COVID-	19, the teaching o	can be on <mark>-</mark> site and/o	r on-line according to	TGGS Policy.	

Faculty/College: TGGS

9. Information for quality assurance in education

This course shows evidence of:

□ Development of implementation from previous practices, e.g. the improven			
	class teaching, course content, content classification and methods used for learning		
	assessment		
	Involvement from professional bodies/ external agencies in instruction; thus		
	Enhancing student academic and professional experiences		
	Integration of research or creative activities with instruction; use of research-based		
	learning management; knowledge management practices for learning improvement		
	Integration of academic services and course implementation		
	Combination of cultural heritage preservation efforts into instruction or student		
	activities		

10. Date of latest revision:

August 2021

Faculty/College: TGGS

Section 2: Course Description and Implementation

1. Course Description (As written in the Official Approved Curriculum)

Modern software development process. Techniques for specifying software requirements and coding robust programs. Automated software testing. Software project management techniques.

2. Number of hours per semester

	Pra	ctice	Self-study		
45 hours/semester	30 /	nours	75 hours/semester		
(3 hours/week*)	(2 houi	rs/week*)	(5 hours/week*)		
Remark: * Based on 15 weeks o	of lecture	1			
Course Category:	☑ Lecture	□ Practice	□ Laboratory		
Course Evaluation:	☑ A-F	□ S/U	□Р		
3. Number of hours per	week for academic gu	ıidance to individu	al students		
☐ 1. Giving academic a	advice (minimally numb	er hour per week) d	uring the office hour		
☑ 1 □2	□3 [□ 4 □ 5	□		
Wednesdays at 1	13.00-14.00				
The student can	arrange the time other	than the office hour	via email or instant message		
for the meeting d	ate/time.				
☐ 2. Adopting informati	ion technology-based a	cademic advising			
☐ Email:	sansiri.t@t	ggs.kmutnb.ac.th			
☐ Phone:	06155939	30			
☐ Phone: ☐ Communicatio					
	on Apps: Line ID: aj	sansiri	meeting id and url will be		
☐ Communicatio	e: Google Cla	sansiri	meeting id and url will be		

4. Course Learning Outcomes (CLOs): Students should be able to:

CLO 1. To understand the theoretical concepts in the followings:

- Software development process, e.g. water-fall, iterative, incremental processes as well as advanced software development process, e.g. agile, DevOps processes.
- Requirement engineering for software projects.
- Design Patterns and software refactoring process.
- Coding for robust programs.

Faculty/College: TGGS

- Software testing including design of test sets and automatic software testing.
- Software project management techniques.
- CLO 2. To apply the knowledge of the software engineering to actual software development problems including at the industries.
- CLO 3. To analyze source code, identify code smell and improve existing software by apply the knowledge of software engineering to actual the software engineering problems.
- CLO 4. To analyze software requirement for industrial applications.
- CLO 5. To create or improve software based on stakeholder feedback.

Remark: 1. Guidelines according to Bloom's Taxonomy is available at https://courses.dcs.wisc.edu/design-teaching/PlanDesign_Fall2016/2-Online-Course-Design/2_Learning-Objectives-Alignment/6_objectives_blooms-taxonomy.html

- 2. For the master level course, CLOs should be "apply" and "analyze" or possibly to consider the doctoral CLOs "evaluate" and "create". "Remember" and "Understand" are for the undergraduate level courses, however, they can be implemented only at the beginning of the course.
 - 3. CLOs can be defined as many as appropriated for the course.
- 5. The mapping between Expected Learning Outcomes (ELOs) from the curriculum and Course Learning Outcomes (CLOs)

Table 5.1 ELOs-CLOs Consistency (for a subject-specific course/ a specific curriculum)

ELOs/CLOs consistency	CLO 1	CLO 2	CLO 3	CLO 4	CLO 5
ELO1	✓				
ELO2					
ELO3					
ELO4					
ELO5		✓	✓	✓	✓
ELO6			✓		✓
ELO7				✓	✓
ELO8					
ELO9					✓
ELO10					

Remark: All ELOs and ELOs for the course (highlighted row) are as written in the Official Approved Curriculum.

Table 5.2 Mapping desirable characteristics of KMUTNB graduates and CLOs (for non-specific courses designed for various curriculums)

Faculty/College: TGGS

Consistency between desirable characteristics of KMUTNB Graduates- CLOs	CLO 1	CLO 2	CLO 3	CLO 4	CLO 5
Professional credentials with critical thinking skills		√	√		
2. Integrity and social responsibility				✓	✓
Innovative and technopreneur mindset				✓	✓
4. Global Competence	✓		✓		✓

Section 3: Student Improvement in relation to Course Learning Outcomes (CLOs)

Organizing learning to develop skills/ knowledge; evaluation of CLOs in accordance with the ones identified in Section 2.4

Course Learning	Teaching Methods	Evaluation Methods
Outcomes (CLOs)	compliant with CLOs	compliant with CLOs
CLO 1	Lecture*	Assignment evaluation
	Active learning**	Assessment of assigned exercises
	In-class exercises	• Exam***
	Individual and/or group assignment	
	Additional reading assignments from	
	research and/or literature journals	
CLO 2	Case studies, project-based learning	Assignment evaluation
	In-class exercises	Assessment of assigned exercises
	Individual and/or group assignment	• Exam***
	Additional reading assignments from	
	research and/or literature journals	
	Group discussions	
CLO 3	Lecture on how to apply theoretical	Assignment evaluation
	concepts to the industrial applications	Assessment of assigned exercises
	Demonstration on the use of computer	Computer project to determine the
	software for simulations and/or writing	thermodynamic properties of the simple
		chemical system

OBE 3-KMUTNB

Program: ECE Degree Level: Master Faculty/College: TGGS

Course Learning	Teaching Methods	Evaluation Methods
Outcomes (CLOs)	compliant with CLOs	compliant with CLOs
	the computer code for numerical	
	simulations	
	In-class exercises	
	Group discussions on project updates	
	Mentoring on the problem solving	
CLO 4	Case studies, project-based learning	Assignment evaluation
	In-class exercises	Assessment of assigned exercises
	Individual and/or group assignment	• Exam***
	Additional reading assignments from	
	research and/or literature journals	
	Group discussions	
CLO 5	Case studies, project-based learning	Assignment evaluation
	In-class exercises	Assessment of assigned exercises
	Additional reading assignments from	Class project to extend an opensource
	research and/or literature journals	software for a selected platform related
	Group discussions on project updates	to the industrial applications
	Mentoring on the problem solving	

Remark: * Lecture on the concept of the topic is introduced with basic or fundamental definitions, visualization and correlations. For the complicated equation, the derivation from the basic laws can be shown to students. So, the students do not memorize the equations but understand the basic concept and basic equation. The lecturer will introduce the advanced and new concepts, technologies, and findings to students from publications such as journals and websites and from the research and industrial experiences.

** Active learning by asking questions related to the topic in the lecture and encouraging the students to response to the questions. If the students cannot response with answers, then the lecturer will give some guidance until the students can response.

*** Exam on the basic concepts and equations with simple problem solving in the closed-book format as a review, whereas the complicated/integrated problem solving will be worked in the open-book format.

Faculty/College: TGGS

Section 4: Lesson Plan and Evaluation

1. Lesson Plan

Week	Topics/Details	CLOs	Hours	Learning and teaching activities; teaching media	Lecturer
				(if any)	
1	Overview, Project		3.0	Lecture, Case studies,	
	Discussion, Software			Q&A	
	Engineering Foundation				
2	Software Processes	CLO1	3.0	Lecture, Case studies,	
				Q&A	
3	Requirement Engineering	CLO1,	3.0	Lecture, Case studies,	Dr. Sansiri
		CLO4		Q&A	
4	Object Orientation Concept	CLO1,	3.0	Lecture, Case studies,	Dr. Sansiri
		CLO2		Q&A	
5	Project Presentation 1	CLO5	3.0	Student Presentations,	
				Q&A	
6	Object Orientation Analysis	CLO2,	3.0	Lecture, Case studies,	Dr. Sansiri
		CLO3,		Q&A	
		CLO4			
7	Software Design, Information	CLO1,	3.0	Lecture, Case studies,	Dr. Sansiri
	Hiding, Object Orientation	CLO2,		Q&A	
	Design	CLO3,			
		CLO4			
8	Design Pattern	CLO1,	3.0	Lecture, Case studies,	Dr. Sansiri
		CLO2,		Q&A	
		CLO3			
9	Midterm Exam		3.0	Exam	Dr. Sansiri
10	Project Presentation 2	CLO5	3.0	Student Presentations,	Dr. Sansiri
				Q&A	
11	Refactoring	CLO1,	3.0	Lecture, Case studies,	Dr. Sansiri
		CLO2,		Q&A	
		CLO3			
12	Programming	CLO1,	3.0	Lecture, Case studies,	Dr. Sansiri
		CLO2,		Q&A	
		l	l		

Faculty/College: TGGS

Week	Topics/Details	CLOs	Hours	Learning and teaching	Lecturer
				activities; teaching	
				media	
				(if any)	
		CLO3,			
		CLO4			
13	Quality Assurance, Testing,	CLO1,	3.0	Lecture, Case studies,	Dr. Sansiri
	Verification	CLO3		Q&A	
14	Project Management	CLO1	3.0	Lecture, Case studies,	Dr. Sansiri
				Q&A	
15	Project Presentation 3	CLO5	3.0	Student Presentations,	Dr. Sansiri
				Q&A	
16	Final Exam	CLO1	3.0	Exam	Dr. Sansiri
17	Project Delivery	CLO5	3.0	Student Presentations,	
				Q&A	
		Total	51.0		

2. Evaluation Plan (in accordance with OBE 2 mapping framework)

Course Learning Outcomes (CLOs)	Evaluation Methods	Week of Evaluation	Percentage of Evaluation
CLO 1, 2	Individual assignment	1-17	20%
CLO 1	Group assignment	5, 7, 15, 17	50%
CLO 1, 2, 4	Midterm exam	9	15%
CLO 1, 2, 3, 4, 5	Final exam	16	15%

Section 5 Teaching/Learning Resources

Textbooks and materials

Main Text:

S. Tanachutiwat, Lecture Notes in Advanced Software Engineering

Important documents and Information

[1] IEEE Computer Society, "Software Engineering Body of Knowledge," online, available at www.computer.org/web/swebok/v3

Additional Documents

Faculty/College: TGGS

- [1] CMMI Product Team 7, Software Engineering Institute, CMMI for Development version 1.2, CMU/SEI-2006-TR-008, August 2006.
- [2] H. Lichter, TGGS Course Software Engineering (Presentation), RWTH Aachen
- [3] USC-CSE, Homework 1 Defect Amplification Model (Presentation), Center for Software Engineering, University of Southern California.
- [4] C. Ebert, R. Dumke, M. Bundschuh and A. Schmietendorf, Best Practices in Software Measurement: How to use metrics to improve project and process performance, Springer Berlin Heidelberg, 2005.
- [5] R. E. Park, W. B. Goethert and W. A. Florac, Goal-Driven Software Measurement- A Guidebook, CMU/SEI-96-HB-002, August 1996.
- [6] M. Barbacci, M.H. Klein, T. A. Longstaff and C. B. Weinstock, Quality Attributes, CMU/SEI-95-TR-021, December 1995.
- [7] J. Brosseau, Software Quality Attributes, Clarrus Consulting Group Inc., 2007.

Section 6 Course Evaluation and Improvement

1. Course evaluation by students

The students will have an opportunity to evaluate the effectiveness of the course in a form of paper survey and group interview at the end of each semester. The results of survey and interview including the grading will be reviewed by the curriculum meeting to evaluate the course's effectiveness.

2. Strategies for assessing learning management

The students will have an opportunity to evaluate the teaching of the course in a form of paper survey and group interview at the end of each semester. The results of survey and interview including the grading will be reviewed by the curriculum meeting to evaluate the teaching as well as returning to the lecturer for further improvement.

3. Improvement schemes of course implementation

The evaluation from the students including the grading will be submitted to the curriculum meeting for reviewing and brainstorming to improve teaching of each course. Comments and suggestions given by the curriculum meeting will be informed to the responsible lecturer of each course.

4. Verification of students' learning outcomes, referred to OBE 2 and 3

The grading of this course will be evaluated and reviewed by the Department meeting and the TGGS executive board meeting in order to verify its appropriateness before the final approval.

5. Course review and improvement plans

OBE 3-KMUTNB

Program: ECE
Degree Level: Master

Faculty/College: TGGS

The results of the grading evaluation and student evaluation will be submitted to the curriculum meeting for reviewing and brainstorming to improve the effectiveness of the offered courses. Comments and suggestions will be informed to the responsible lecturer of each course.